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Executive Summary

New York City faces significant threats from climate change, with current climate models
highlighting the likelihood of increasing temperatures, rising sea levels, and more frequent
extreme weather events. These current and emerging hazards pose substantial challenges to
the city's infrastructure and communities, with projections aligned with those used at the State
level, emphasizing the importance of regional consistency in risk assessment. In this report,
members of the NYC VIA team present key findings and recommendations from an 18-month
study to understand future climate change in New York City.

Below, we summarize many of the key findings, which are described in more detail in the full
report:

● Sea level rise estimates project a high-end increase of approximately four to five feet by
the end of the century, with projections available for multiple decades. Flood risk
studies traditionally treat rain and storm surge as independent processes. However,
historical data analysis reveals low, non-zero correlations between rain and surge,
particularly in hurricanes. This poses a direct threat to coastal communities and
infrastructure, with increased risk of storm surge flooding during hurricanes and other
high-tide events. The potential co-occurrence of rain and storm surge, while not always
additive in terms of flooding depth, adds a layer of complexity to risk assessment and
necessitates further investigation through advanced flood modeling.

● While less frequent than other storm types, tropical cyclones (TC) pose a greater threat
due to their intensity and destructive nature. Their potential impact warrants separate
analysis in all hazard assessments, utilizing both historical data and modeled events.
Comprehensive future assessments focusing on hurricane risks and employing multiple
methods, models, and researchers, are crucial for robust planning and resilience
strategies. Future projects are encouraged to assess climate-sensitive hurricane risks
comprehensively.

● Understanding the characteristics and trends of extreme rainfall is critical for managing
urban pluvial flooding, triggered by intense, localized downpours that overwhelm
drainage network systems. Future projections based on updated climate models
(CMIP6 model1) indicate greater changes in daily extreme rainfall compared to earlier
models. These changes include higher projected rainfall amounts for the 100-year
storm event. There is only limited evidence to suggest the rate of increase for hourly
precipitation extremes is faster than that for daily totals. Limited subdaily rainfall data

1 CMIP6 stands for Coupled Model Intercomparison Project Phase 6. It is a collaborative international
effort among climate modeling groups to systematically compare and evaluate climate models.
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hinders efforts to fully characterize pluvial flood risks, highlighting the need for a
network of high-resolution rain gauges across the City and its watersheds. Analysis of
historical trends reveals significant increases in the frequency and duration of events
with extreme peak and average precipitation intensities, suggesting a future with more
frequent and potentially more impactful pluvial floods.

● Task 4 focuses on a systematic evaluation of health-related economic costs attributed
to climate-sensitive events in New York City. Divided into three parts, the task involves
assessing costs from past events, understanding future population changes in New York
City, and examining the implications of these changes on health economic damages.
The section details health-related economic costs due to past events from 2000 to
2019, utilizing a multi-step approach that includes a literature review, calculation of
mortality and morbidity cases, and monetization of these cases. Noteworthy findings
include an annual average of 361 additional deaths, 1,833 hospital visits, and 1,404
emergency department visits due to climate-sensitive events, resulting in annual
health-related economic costs of $4.17 billion and a total of $83.45 billion over two
decades. The study also acknowledges potential underestimation of morbidity costs
due to limitations in available studies and monetization techniques.

● The six Flood Vulnerability Indices (FVIs) for New York City, which the study team
developed, enable users to view vulnerability of the City’s population to six flood
hazard scenarios, providing guidance for policies and operations to enhance flood
resilience. Each index consists of two components. One component is exposure to one
of the hazard scenarios, including current and two future storm surge scenarios and
current and two future tidal flooding scenarios. The second component, which remains
the same across all six indices, assesses susceptibility to harm from flooding and
capacity to recover in the population. The FVIs are innovative in their demonstration of
exposure, in representing susceptibility to harm and capacity to recover with indicators
that have been validated for the case of storm surge flooding, and in the method used
to aggregate the indicators into an index.

Recommendations based on this research include the need for improved high resolution
temporal and spatial precipitation data quality, standardized procedures for sub hourly rainfall
data collection, and the establishment of a network of maintained precipitation gauges.
Ongoing assessment of TC climatology changes, consideration of compound rain-surge
flooding, and validation of flood vulnerability indicators through further flood impact analysis
are also essential for robust climate risk assessment and planning, as are greater
understanding of climate related morbidity costs.

In conclusion, New York City faces significant challenges from climate change, but proactive
measures grounded in robust data analysis, advanced hydrologic & hydraulic modeling, and
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targeted vulnerability assessments can enable it to build resilience and navigate the changing
climate with greater preparedness, confidence, and advanced flood warning systems. Investing
in climate-resilient infrastructure, improving drainage systems, supporting residents’ efforts to
reduce impacts, and implementing early warning systems are crucial steps to mitigate the
worst impacts of extreme weather events. By understanding the specific vulnerabilities of its
diverse communities and prioritizing targeted adaptation strategies, New York City can rise to
the challenges posed by climate change and emerge as a model for urban resilience in the face
of a changing world.

Introduction
The Town+Gown New York City Climate Change Vulnerability, Impacts, and Adaptation Study
(VIA) brings together an interdisciplinary team of researchers, climate scientists, and
professionals co-led by The New School’s Timon McPhearson and Joel Towers to work closely
with the NYC Mayor’s Office of Climate & Environmental Justice (MOCEJ), Interagency
Collaborators, and the New York City Panel on Climate Change Working Groups (NPCC WGs) to
develop a comprehensive analysis of, and deliver data on, future climate conditions and
associated socio-economic impacts in New York City.

The VIA team includes colleagues from Arcadis, Columbia University, Cornell University, City
University of New York, Drexel University, Lamont Doherty Earth Observatory, NASA/GISS,
Natural Resources Defense Council (NRDC), Population Council, Sarah Lawrence College,
Science and Resilience Institute at Jamaica Bay (SRIJB), Stevens Institute of Technology, and
USDA Forest Service.

The findings from the VIA study reflect the immense value of co-production leveraging
expertise from across the City’s diverse academic institutions and private sector with New York
City Interagency collaborators to address the pressing issue of climate change across the
region. This collaboration has yielded detailed insights into critical areas such as future
projections of sea level rise, the increasing frequency and severity of extreme weather events,
the substantial health-related economic impacts of climate change, and the development of
the first Flood Vulnerability Index for New York City. Significantly, the co-production approach
has ensured these strategies are grounded in scientific rigor and strategic recommendations
that have strong potential to inform future responses to the multiple impacts of climate change
in the near term and future. Throughout the 18 month duration of the study, research
deliverables have evolved in consultation and collaboration with NYC Interagency
Collaborators highlighting the commitment of the overall VIA team to this dynamic,
complementary, and coproduced undertaking. The VIA final report underscores the necessity
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for ongoing research and collaboration, calling upon stakeholders to utilize the study’s findings
to secure a resilient and sustainable future for New York City.

The report is organized around primary tasks identified by MOCEJ and agreed on in the project
scope:

● Task 2: Climate Projections and Climate-Sensitive Hazards for NYC Region
● Task 3: Current and Future Extreme Heavy Rainfall in New York City
● Task 4: Systematic Assessment of Health-Related Economic Costs from

Climate-Sensitive Events in New York City
● Task 5: Flooding Vulnerability Index and Impact Assessment for New York City
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Task 2: Climate Projections and Climate-Sensitive
Hazards for New York City Region

10



Task 2: Climate Projections and Climate-Sensitive Hazards for New
York City Region

Core Team Members:
● Philip Orton, Co-Lead (Stevens Institute of Technology)
● Radley Horton, Co-Lead (Columbia University)
● Dan Bader (Columbia University)
● Franco Montalto (Drexel University)
● Luis Ortiz (George Mason University)
● Timon McPhearson (The New School)
● Christian Braneon (CUNY)

New York City Interagency Collaborators:
● Lauren Smalls-Mantey (Department of Health)
● Jarrod Sims (Office of Management and Budget)
● Alan Cohn (NYC Department of Environmental Protection)
● Jennifer Garigliano (NYC Department of Environmental Protection)
● Erika Jozwiak (MOCEJ)

2.1 Key Messages

● Updated climate projections, developed using the latest models and data, continue to
predict a future of higher temperatures, rising sea levels, and more frequent extreme
events. The projections for New York City and the City’s risk assessment are aligned
with those being prepared for New York State’s Climate Impact Assessment.

● For sea level rise, the VIA projections (developed for this study) show a high estimate of
between approximately four to five feet by the end of the century. Projections are now
available for all decades from the 2030s through the 2090s, 2100, and now, 2150.

● Flood risk studies, insurance products and flood maps typically assume rain and storm
surge are independent processes. Our analyses of New York City historical data show
rain and storm surge generally have low, but non-zero correlations. However, for
Tropical Cyclones (TCs), our results also show there is a moderate probability of one
variable being high when the other is extreme.

● Co-occurrence of rain and surge does not guarantee additive behavior where flooding is
increased in depth or spatial extent. Therefore, a recommended next research step is
understanding New York City compound rain-surge flooding will be in order to simulate
a set of extreme event scenarios in flood models.
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● TCs generally cause more extreme hazards compared with other storm types and are
responsible for a majority of the most extreme events, even though they occur far less
frequently. As a result, we recommend considering separate analysis of TCs in all
hazard assessments, including rain, coastal flooding and compound rain-surge, using
observed historical data where available, but also modeled events if helpful to reduce
uncertainties.

● We recommend future projects and NPCC assessments embark on a comprehensive
assessment with multiple TC climatology change assessment methods and additional
researchers, to better understand future climate-sensitive hurricane risks. This could
help New York City achieve its goal of properly quantifying and planning for high-end
risk, more in-line with its request for NPCC to use the 90th percentile sea level rise
projections in future flood maps.

2.2 Objectives and Research Activities

The objectives of Task 2 were to (1) synchronize and apply outputs from the New York State
Climate Impacts Assessment (NYSCIA) to the heterogeneous environment and diversity of
stakeholders within New York City; and (2) develop new hazard assessments, and climate
impact projections with associated sensitivity analyses based on the needs and gaps identified
by the Client team, and related stakeholder workshops in which the NYSCIA projections were
presented. Below we introduce these assessments, analyses and projections.

A key component of Task 2 was facilitating the review and adaptation of NYSCIA projections to
the New York City context, inclusive of New York City stakeholder feedback (Section 2.3
below). These projections are a key component of the NPCC4 climate science special report
(Braneon et al., in press). A confluence of factors aligned to make this a timely moment for
updated New York City climate projections. The Intergovernmental Panel on Climate Change
Sixth Assessment Report (IPCC AR6) report emphasized the primacy of climate science
aspects the NPCC and MOCEJ have long highlighted, such as the focus on extreme events,
stakeholder-driven climate metrics, low probability high-consequence outcomes, and
compound events/cascading impacts. The IPCC’s application of the latest climate models and
most recent data to this adapted lens thus provided fertile avenues for the Task 2 Team.

In addition, the NYSCIA projections, which are based on the latest IPCC report and associated
global climate models (GCMs), provided the opportunity to explore the applicability for New
York City stakeholders of key NYSCIA updates relative to prior New York City and New York
State assessments, such as higher spatial resolution (Section 2.6, 2.7) and bias-correction
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based on quantile mapping. The high-resolution dynamically downscaled heat impact
projections are a potential product for a future NPCC5 report.

Lastly, Task 2 developed new hazard assessments and projections (Sections 2.4-2.5) and
sensitivity analyses (Sections 2.8-2.9), based in most cases on needs and gaps identified by
the Client team and stakeholder feedback. This includes calls for research on compound and
cascading hazards (City of New York, 2021) and feedback at the NYSCIA workshop in
collaboration with the Client Team and NPCC Climate Science Working Group. A summary of
the assessment of the potential for compound rain-surge flooding is included in the NPCC4
Flooding chapter (Rosenzweig et al., in review). The sensitivity study of the importance of TC
climatology change (Section 2.8) influenced the final text for the climate science special report
(Braneon et al., in press).

2.3. Climate projections for NPCC4

The Task 2 team was responsible for preparing updated climate change projections, specifically
for sea level rise in New York City. In addition to these projections, the Task 2 team was also
tasked with integrating updated climate projections developed for the New York State
Assessment (Lamie et al., 2024) for additional climate variables (such as temperature,
precipitation, and extreme events), to the work of the VIA project and NPCC. A description of
methodologies for theNew York State Assessment Climate Impacts Assessment (NYSCIA)
(Bader and Horton, 2023) can be found online here. The New York City region in NYSCIA are
the projections used in this project and by the NPCC. The data is now available online atNYC
Open Data.

In June 2022, a workshop was held to coordinate efforts between the NYSCIA and VIA project.
The workshop was attended by VIA project team members, members of the NPCC, and
representatives from New York State and New York City (Towers, McPhearson et al., 2023).
Task 2 scientists helped co-organize the workshop and led multiple presentations over the
course of the event. One of the primary objectives of the meeting was to ensure the climate risk
information used by both the City and State is coordinated and consistent. A secondary
objective of the meeting was to have subject matter experts present on the
state-of-the-science for a variety of climate hazards impacting New York State, including New
York City. Presentations covered topics such as the updated climate science projections using
Coordinated Model Intercomparison Project (CMIP6) model data, sea level rise projections and
methodologies and climate extremes and storms, and compound extreme events.
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Over the duration of the VIA project, interactions between VIA, NYSCIA, and NPCC continued,
ensuring continuity in the projections used across the projects and maintaining the use of the
best available, local climate risk information. Methodologies (and the projections) for sea level
rise are consistent in this project, the NPCC Climate Science Special Report, and the NYSCIA
report. Since the interim report, collaborations between the projects have further led to 1)
preparation of additional metrics of temperature extremes specific to New York City
stakeholders and 2) discussion of the selection of the SSP5-8.5 scenario2.

In some ways, the VIA project served as a "bridge" that strengthened the relationship between
the NYSCIA and NPCC. As VIA was tasked with providing updated projections for New York City
support for NPCC, Task 2 researchers were effectively able to facilitate and translate the
information across the different projections, while also tailoring it to specific applications and
needs of New York City stakeholders here.

a. Methods

Since the 2015 NPCC, there have been advances in sea level rise understanding and projection
methodologies, including new approaches to capture the possibility of rapid ice melt from
land-based ice sheets (Bamber et al., 2019; Gornitz et al., 2019; Fox-Kemper et al., 2021).
Several recent studies confirm the plausibility of high-end sea level rise scenarios (e.g., Slangen
et al., 2017) and offer techniques to adapt projections to the regional/local scale (Carson et al.,
2016; Fox-Kemper et al., 2021). There is growing evidence that supports the plausibility of
higher-end sea level rise projections, primarily based on observations of land-based ice loss
and advances in climate modeling.

Our analysis includes updated sea level rise projections for New York City based on those
developed for the IPCC 6th Assessment report (see Table for the updated projections and
stand-alone document for description of methods). These projections are based on the CMIP6
models and SSP framework (Eryring et al., 2016; O’Neill et al., 2016; Riahi et al., 2017), and
incorporate advances in process understanding, improved and lengthened observational
records, and improved ice-sheet modeling. The sea level rise projections were developed in
coordination with the NYSCIA and the NPCC to ensure the methodologies are consistent in New
York City.

Projections for extreme events (such as the additional temperature metrics prepared for the
City) for this project align with those from the NYSCIA, using a method known as quantile

2 The SSP5-8.5 scenario is a future pathway outlined in the Shared Socioeconomic Pathways (SSPs)
framework, which is used in climate change research to explore different societal, economic, and
environmental trajectories. SSP5-8.5 represents a pathway where global development is characterized
by high levels of socioeconomic inequality, rapid economic growth, high energy demand, and limited
environmental regulations or climate change mitigation efforts.
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mapping. The projections are based on two SSPS, SSP2-4.5 and SSP58.5 (Riahi et al., 2017),
the same scenarios used for sea level rise, and use 16 global climate change models (Bader
and Horton, 2023; Lamie et al., 2024).

The additional metrics are:

1. Days with maximum temperature at or above 82F
2. Days with minimum temperature at or above 80F

Full data tables with the updated results will be in the NPCC4 report. Additional extreme heat
metrics include days at or above 90F and the frequency and duration of heat waves.

b. Results

The table here presents the updated sea level rise projections for New York City (in inches).

10th 25th 50th 75th 90th ARIM
2030s 6 7 9 11 13
2040s 9 11 12 15 17
2050s 12 14 16 19 23
2060s 15 18 21 24 29
2070s 18 21 25 31 36
2080s 21 25 30 39 45 81
2090s 24 28 34 47 58 114
2100 25 30 36 50 65
2150 38 47 59 89 177
Table 2.1. Updated sea level rise projections for New York City

Using the middle range (25th to 75th percentiles) across all three scenarios, sea level is
projected to rise along the New York City coastline by seven to 11 inches by the 2030s, 14 to
19 inches by the 2050s, and 25 to 39 inches by the 2080s. The high-end estimate (90th
percentile) for sea level rise by the 2080s is 45 inches. By 2100, sea levels are projected to rise
by as much as 65 inches.

Based on the ARIM scenario from the 2019 New York City Panel on Climate Change report,
accelerated loss of land-based ice could lead to sea level rise of up to 81 inches by the 2080s
and 114 inches by 2100 under a plausible “worst-case” scenario. While unlikely, these
projections are included here because they cannot entirely be ruled out and would have very
high consequences, should they occur. Such low-probability, high-consequence scenarios may
be of interest for some risk-management decisions.
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c. Discussion

In the review of the NYSCIA report and the NPCC Climate Science Special report, a couple of
the reviewers commented on the selection of SSP scenarios used in the updated projections
(SSP2-4.5 and SSP5-8.5). These comments focused on the use and plausibility of SSP5-8.5.
The sea level rise projections for the VIA project use both the low and medium confidence
scenarios from SSP5-8.5, and the projections for NPCC/NYSCIA also use SSP5-8.5. The Task 2
team prepared multiple sets of projections for internal review to look at the different pairings of
sea level rise scenarios and agreed upon the approach outlined here.

Our rationale for selecting the scenarios used for VIA includes:

1. These scenarios have the same end-of-century radiative forcing as the two
representative concentration pathways (RCPs) used in previous New York City
projections, providing continuity with that work. Stakeholder feedback also illustrated a
preference for the use of these two scenarios (NYSERDA, 2020).

2. Relative to many other scenarios, there were also a large number of climate models
available for these two SSPs.

3. They span a broad range of what we consider plausible climate outcomes, including the
high-consequence outcomes that are critical for risk management.

4) While most would argue the balance of evidence suggests lower greenhouse gas (GHG)
forcing/concentrations are more likely than those associated with SSP5-8.5, the balance of
evidence also now suggests the changes in extreme-event statistics, and climate impacts, are
unrealistically low. (See NPCC 2022) Inclusion of SSP5-8.5 offers partial protection against
the severe limitations of climate and impact models to assess tail risks, including but not
limited to those associated with extreme events.

For the interpretation of results from the 2014 New York State Climate Projections Update
(Horton et al., 2014) and New York City Panel on Climate 2015 (Horton et al., 2015), these
updated projections for sea level rise are lower at the high-end 90th percentile, but broadly
consistent at the 50th percentile. Despite these differences, these changes fall within the
uncertainty we would expect with such projections, given the deep uncertainty about the
amount of long-term sea level rise.

d. Research Gaps

Moving forward, there is a need for further research in several areas related to climate
projections in urban contexts.

First and most fundamentally, more and improved observational data, including new weather
stations, and modeling are essential. Higher resolution global models will also yield new
insights over time.
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Next, the last decade revealed the importance of compound and sequential extreme events.
Most assessments to date have not considered these rigorously, and their impacts have not
been extensively evaluated yet with GCMs. Below, in Sections 2.4 and 2.5, we assess rain and
storm surge compound hazard and rain and humid-heat sequential hazards. However, other
hazard combinations are possible and should be comprehensively assessed.

Finally, further work is also needed on identifying climate metrics of particular use to
decision-makers and those with climate impact expertise.

2.4. Compound rain-surge hazard
Coastal-urban areas are vulnerable to intense rainfall and extreme storm surge and their
potential compound flooding effects. While recent studies have provided evidence of
widespread, and in some cases rising, joint occurrence of extreme rainfall and storm surge, few
studies have investigated these phenomena locally in detail.

Tropical cyclones (TCs, including post-tropical cyclones) and extratropical cyclones (ETCs)
both can cause coastal hazard extremes and compound flooding. However, these storm types
have different energy and moisture sources and as a result, cause different hazard intensity in
terms of maximum wind speed, storm surge (See Section 2.8 below) and rainfall rates.
Probabilistic assessments for areas susceptible to rare, extreme TCs, should evaluate TCs as a
separate population of data to avoid mistaking these events as outliers in comparison to other
much more frequent storms.

In this subtask, we present the most detailed statistical assessment to date for New York City
co-occurring rain and storm surge, including combined and separated assessments of different
storm types. A manuscript with detailed descriptions of the research is submitted for
peer-reviewed publication (Chen et al., submitted) and included here as Appendix 2.

a. Methods

Our research is more detailed than prior studies because we utilized hourly rainfall data with a
specific focus on simultaneous and near-simultaneous occurrence of rain and surge events.
One prior research study of NYC exemplifies the typical approach of other studies, utilizing
daily rainfall totals with hourly storm surge data, considering them as occurring jointly if they
were within plus or minus one day (Wahl et al., 2015). NYC encompasses many small
urbanized watersheds with rapid drainage, where rain and surge must happen nearly
simultaneously to cause compounding, so our approach will provide more useful results.
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We utilize storm track data for TCs (HURDAT) and Extratropical Cyclones (ETCs) to assess data
separately to determine whether resulting correlations and probabilities are higher than a
merged assessment of all storm types (see Appendix 2 for further details; Landsea and
Franklin, 2013). Historical data for both rain and surge show the most extreme historical
events were tropical (or post-tropical) cyclones (TCs). Historically, severe coastal floods (e.g.,
Hurricane Sandy in 2012, a Nor'easter in December 1992), pluvial floods (e.g., Hurricane Ida in
2012) and compound floods (Hurricane Irene in 2012; Orton et al., 2012) have struck New
York City, and can be associated with TCs, ETCs and convective thunderstorms. Four of New
York City’s top five storm surges from 1788-present were TC (or post-tropical cyclones), three
of the top five hourly rain events from 1948-present were TC (KNYC: Central Park), and four of
the top five daily rain events from 1869-present were TC (KNYC: Central Park).

We quantitatively evaluate characteristics of compound flood drivers (rain and surge,
quantified as the non-tidal residual NTR) including their dependency, magnitude, lag time and
joint return periods. We follow a common approach for statistical analysis of compound
extremes, with “two-sided sampling” (e.g., Jane et al., 2022; Wahl et al., 2015; Ward et al.,
2018) where one case looks at surge during high rain events and the other rain during high
surge events. Our statistical analyses are conditioned on the primary flood driver being
top-ranked, while the secondary flood driver can be any value. We refer to the top-ranked rain
events as Pluvial-Coastal (P-C) events (with durations from 1-48 hours), and top-ranked surge
events as Coastal-Pluvial (C-P) events. The primary flood drivers are sampled by
peaks-over-threshold (POT) approach based on a per-year average (PYA) frequency of five
events.

Compound flood drivers and their co-variation can vary across different locations within New
York City. For example, a TC event hitting New Jersey may cause large surge but little rainfall at
NYC (e.g. Sandy). Or, a TC crossing over Long Island to the east of New York City may cause
storm surge at Kings Point (near La Guardia Airport - see map in Appendix 2) and intense rain
“to the left of” the storm (e.g. the 1938 Long Island Express Hurricane). This study conducted
evaluations at both The Battery and Kings Point to represent the flood hazards pertinent to
South Bronx and Northern Queens, respectively.

b. Results and Discussion

Here, we summarize some primary findings of likely interest to New York City stakeholders.
Again, more detail is given in Appendix 2. New York City rain and surge generally have
low-to-moderate correlations, but one exception is for top-ranked rain events that come from
TCs. While the correlation for all top-ranked rain event data combined is near zero, correlations
for TC events alone are high (0.52) (Figure 2.1).
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Figure 2.1: Plots of non-tidal residual (“surge”) and rain for the top-ranked rain events from
1948-2021, all events (left) and TC (and post-TC) events only (right). Data are plotted as scaled
ranks from 0 to 1, used in computing the Kendall rank correlations of 0.0 and 0.52,
respectively.

The hourly data reveal subtle but important spatial differences in lag times between the joint
flood drivers (Figure 2.2). The lags for TCs tend to be smaller than those for ETCs, and those
for Neither are very spread out across a large range of lag times. This indicates that during
extreme rain or surge events, the secondary driver’s peak is more likely to co-occur with the
extreme driver, thus more likely compound its effects. For the South Bronx, where surge
typically lags rain by two to six hours, this leads to a lower probability of simultaneous
pluvial-coastal compound flooding but a higher probability of fluvial-coastal compound
flooding on the Bronx River. To see this, compare red to black bars and median lag times in
Figure 2.2.
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Figure 2.2: Histograms of lag time for the P-C compound floods (a) and the C-P compound
floods (b). The left, middle and right panels are associated with TC (1), ETC (2) and Neither (3).
The red and black colors represent histograms for The Battery and Kings Point separately. The
numbers in each plot are the median of the absolute lag time for The Battery and Kings Point.
Positive lag time values indicate peak storm surge occurs after peak of rainfall.

TCs have markedly different compound rain-surge hazard characteristics from other storm
types and dominate the joint probabilities of the most extreme events, even though they occur
much less frequently (Figure 2.3). As a result, jointly occurring rain and storm surge for
50-year to 200-year return periods are equal or higher when only assessing TC events versus
assessing “ALL” events together. A similar result has been observed for New York City storm
tide events (Orton et al., 2016) and the general topic of separating TCs from other storm types
in hazard assessment is covered elsewhere within this report (Section 2.8).
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Figure 2.3: The joint return period curves (red lines, blue text labels) for simultaneous rain and
surge (NTR) for P-C compound events (left; a1-a2) and C-P compound events (right; b1-b2) for
ALL data (top row) and for TC data only (bottom row). The black dot points are the observed
events.

Previous studies have assessed the joint probability of rainfall and storm surge (or coastal
water level) hazards for the New York City area (e.g. Wahl et al., 2015; also, the Community
Stormwater Resiliency Study). The research typically uses the daily rainfall data and ±1 day
window to capture the compound flood drivers and evaluate the joint return periods using “All”
events (e.g., Lai et al., 2021; Wahl et al., 2015). However, these studies did not assess the
simultaneous compound flood drivers, which is a more direct impact-oriented metric for pluvial
and compound flooding for this urban environment. More importantly, using compound
samples from “All” events could underestimate the joint probability of extreme compound
hazards, in contrast with a storm separation approach. Recent studies (e.g., Gori et al., 2022)
have begun using synthetic TC storms to evaluate the joint probability of compound rain and
coastal flood hazards, which can be particularly useful for assessing future climate change. The
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observation-based approach we have used, and this new model-based approach, can be
complementary. While the observation-based approach is grounded in real-world data, the
model-based approach can improve sample sizes for extreme events and enable extending the
science to climate projections.

c. Research Gaps

Statistical and probabilistic assessments of rain and storm surge such as this one can
demonstrate that flood drivers can co-occur during extreme storm events. Co-occurrence does
not guarantee additive behavior where flooding is actually compounded, which could be a
vertical effect (deepened flood depths) or a spatial effect (greater flood area). Therefore, we
recommend as a next step that modelers simulate the flooding from these extreme event
scenarios. Given the availability of one or more flood city-wide flood models owned by New
York City (e.g. Ghanbari et al. 2024), it is recommended an assessment of actual compound
flood risk is initiated.

This research does not evaluate historical or future climate change but focuses instead on
establishing a baseline assessment of rain-surge compound hazard. We use past data to look
at the present compound flood risk, requiring an assumption that the past processes and
probabilities reflect those of the present. We remove sea level rise from the storm surge data in
order to eliminate the most well-established climate change effect. Future work should assess
future changes to compound flood drivers and risk due to climate change.

2.5 Sequential hazard

There is growing awareness that sequential hazards can pose outsized, non-linear impacts on
cities and communities (Raymond et al., 2020). Furthermore, recent research has revealed
how the frequency and intensity of sequential extremes can change dramatically under even
small amounts of global warming (Zcheishchler et al., 2020). It is thus perhaps surprising that
historical risk assessments have generally not considered sequential hazards, in any detail. We
focus on sequential relationships between high precipitation and high humid heat, since both
types of events are projected to increase with climate change, and because associated
infrastructure disruptions and challenges to emergency management can be expected to make
the second event in the sequence more impactful than it would otherwise be.

a. Methods

Gridded temperature, humidity and precipitation fields from the fifth major global reanalysis
produced by the European Centre for Medium-Range Weather Forecasts (ERA5)
high-resolution product (Hersbach et al., 2020) (1979-2019) were analyzed on a 1° x 1° grid
for June - August (JJA). Daily maximum wet bulb temperatures (WBT) are calculated as in
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Rogers et al., 2021, using code adapted from Kopp et al., 2020, that executes an algorithm
from Buzan et al., 2015 for the Davies-Jones method (2008).

Daily summer climatologies are calculated at each gridpoint for precipitation and WBT
smoothed with a 30-day running mean. Use of a 30-day running mean smoothes the
day-to-day climatology by removing the random timing of stochastic weather events. Daily
anomalies are computed by subtracting these smoothed climatologies from the raw daily data.
Extreme WBT values are computed using the 90th percentile threshold of the daily anomalies.
In contrast, the 90th percentile precipitation threshold is calculated using only the subset of
days that include at least one mm of rainfall. Anomalies are used to remove the predominating
influence of the seasonal cycle on humidity, temperature, and precipitation, which would
obscure the influence of synoptic variability. Furthermore, anomalies better capture relatively
extreme events outside the warmest or the wettest weeks in the seasonal composites.

The difference in daily average extreme WBT anomalies conditioned on extreme precipitation
anomaly days, relative to all days of the summer months, are composited to generate maps in
the days prior to and following an extreme precipitation anomaly day. We compute these
composite maps for a) the single day of the local extreme precipitation event, and the average
across three days b) before and c) after the local extreme precipitation event. These
composites are also generated in the reverse direction, plotting precipitation anomalies
conditioned on local extreme WBT events. The methods used for these two sets of composites
are repeated using dry bulb temperature (DBT) in place of WBT for comparison. Lastly, a
two-sample Kolmogorov-Smirnov test for goodness of fit with a p-value of less than 0.05 is
conducted and plotted on top of each global difference map to show areas of significance.

In addition to the gridpoint-level analysis described above, a smaller, New York City region is
defined as 40-41N and 71-72W. In this region, we show the evolution of WBT, DBT, specific
humidity, and precipitation over the eleven days surrounding a 90th percentile precipitation
event. Summer daily total precipitation, maximumWBT, mean DBT and mean specific humidity
data from ERA5 were averaged across each grid point for the regions, after the location were
selected from the raw daily data. The daily anomalies for these region averages are then
calculated as above. Composites showing the temporal evolution of these variables five days
before and after extreme precipitation events are then plotted for the New York City region as
described above.

b. Results

Figure 2.4 shows results for days with enough precipitation to classify as a 90th percentile rain
event. The left panel shows WBT anomalies on the three days before the rain event, with both
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the rain event and the WBT anomaly being defined for each separate box in the mapped region.
The map shows WBT tends to be slightly above normal in the days leading up to the heavy rain
event, although the opposite is observed over coastal Long Island. The next four panels of
Figure 2.4 show spatially averaged values, over the smaller boxed New York City region
domain, of four variables conditioned on a heavy rain day. This shows WBT rises slightly in the
lead up to the rain event, with a slight peak on the day of the rain, followed by a slight drop in
the days thereafter. When WBT is decomposed into its two constituent parts (specific humidity
and dry bulb temperature), a similar pattern is observed, with both variables above normal
before the event, and then dropping from a peak after the event. However, the pattern is much
more pronounced for specific humidity, with a strong spike beginning in the day or two before
the rain, peaking strongly on the day of the rain, and then dropping sharply to normal over the
next two days. In contrast, air temperature drops more gradually, from a tiny positive anomaly
before the rains to a more noteworthy drop on the day of the rain, and especially the day after
the rain.

Figure 2.5 shows the same-day relationship between humid heat and extreme precipitation,
averaged over the New York City region. The left panel shows, only for the days with 90th
percentile or greater precipitation, what percentile bins for wet bulb temperature are most
common. While encouraging to see the 90th percentile humid heat bin is not the most
common, it’s discouraging to see humid heat values in the 60th-100th percentiles are far more
common than humid heat values in the 0-40th percentile bins. Results are similar when
conditioned on extreme humid heat days, defined as 90th percentile or greater. On those days,
it is far more common to have precipitation in the 60th-100th percentile than it is to have
precipitation in the 0-40th percentile bin.

Figure 2.4: Results for days with enough precipitation to classify as a 90th percentile rain
event. The left panel shows WBT anomalies on the three days before the rain event, with both
the rain event and the WBT anomaly being defined for each separate box in the mapped region.
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Figure 2.5: Same-day relationship between humid heat and extreme precipitation, averaged
over the New York City-region. WBEI refers to Water Benefit-Based Ecological Index.

c. Discussion

In general, we found relationships between humid heat and extreme precipitation, but they
were not particularly strong. We found evidence that humid heat builds in the lead up to a
heavy rain event, and then drops in the day afterwards. Dry bulb temperature follows a
generally similar pattern although dry bulb temperature drops on the day of the heavy rain,
whereas humid heat drops the day after. Perhaps the key point though is the magnitude of
these changes is relatively small. When same-day occurrences of high humid heat and high
precipitation are considered, a positive correlation is apparent, pointing to heightened risks,
although it is somewhat less extreme, given that that the 90th percentile is not the most
common bin for each variable when the other variable is experiencing a 90th percentile value.

d. Research Gaps

Future work should focus on the most extreme humid heat and precipitation events (e.g. 99th
percentile rather than 90th percentile events). However, due to small sample sizes for 99th
percentile events, a larger spatial domain would be needed, and the observational data used
here might need to be supplemented by model outputs. More generally, projections would be a
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logical next step for sequential humid-heat and extreme precipitation analyses, model
limitations notwithstanding. Additionally, future sequential work should explore additional
physical hazards, like cold air outbreaks and winter precipitation. Finally, the compound hazard
framework could be extended beyond sequential/simultaneous hazards in New York City to
consider simultaneous hazards between New York City and other regions, such as other cities
in the Northeast.

2.6. Land Surface Temperature Projections

a. Methods

Projections of Land Surface Temperature for the end of century (2070-2099) across four
Shared Socioeconomic Pathways (SSPs) as well as Representative Concentration Pathways
(RCPs) scenarios were taken into consideration. These are a low (SSP1-2.6), middle
(SSP2-4.5), and two high emissions (SSP3-7.0 and SSP5-8.5) scenarios and use global climate
model data from the 6th Coupled Model Intercomparison Project (CMIP6). CMIP6 is a
multi-model ensemble of simulations of historical and future climate which include, among
others, simulations of the global earth system using a shared set of initial and boundary
conditions. To preserve information about the spread between the various models, we
computed projections along the 25th, 50th (median), and 75th percentiles of the CMIP6 model
ensemble for each scenario. These global modal data have a typical horizontal resolution
ranging between 1.5-1 degrees.

Land surface temperature data are computed for the New York City boundary based on a
multi-image mean of summer dates (May-Sept.) from 2013-2022. A multi-year period was
selected to ensure it represents the typical climatic surface temperatures during summer
instead of any individual day. Imagery was screened for cloud cover and quality control flags,
with a resulting subset of 34 images. To represent sub-grid scale information on land surface
temperature projections, we compute the mean change in the CMIP6 model data and use it as
a delta added to satellite imagery from the Landsat Analysis ready Product. The spatial
distribution of the data is scaled to preserve the standard deviation of the historical surface
temperature imagery.

b. Results

Our analysis shows while there is significant spread in the projections in the CMIP6 inter-model
ensemble, there is a general increase in surface temperatures by end of century. Absent any
adaptive action, there is no change in the location of temperature hotspots. The analysis also
shows the value of global mitigation on surface temperatures. In SSP1-2.6, the expected
temperature change is between 0-4°C across the entire CMIP6 ensemble. Meanwhile,
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temperatures in the hottest models of the high emission scenarios may expect increases
between 10-14°C across the City (Figure 2.6, below).

Figure 2.6: Projected Increase in NYC Temperatures by 2100. Change in land surface
temperature ( °C) in New York City for SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. Rows
represent the 25th (top), 50th (center), and 75th (bottom) percentile of the CMIP6 model
ensemble.
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c. Research Gaps

The projections developed as part of this study focus on the impact of the climate change
signal on land surface temperatures. However, one key limitation of this work is the
assumption that increases in surface temperature across all land surface types will respond
equally to this climate change signal. There is evidence this may not be the case. For example,
heat storage in buildings and other high heat capacity materials may increase temperatures
over time. Indeed, this heat storage is a key process that often leads to air temperature urban
heat islands (Oke et al., 1981). Another key limitation in this work is the assumption of a static
land surface in New York City. These projections do not account for long-term changes to the
built environment, which would have an impact on the surface temperature characteristics. A
dense network of surface termperature monitoring stations could provide observational data to
inform this research gap.

These gaps may also require the use of sub-kilometer dynamic modeling of the city’s climate,
either by use of an urban canopy model or a micro-meteorological model. Dynamical modeling
would represent many of the feedback processes related to land-atmosphere interactions at
the urban scale, as well as the impacts that change in this land cover may induce. Examples of
this type of model include the UMEP model that models the SEUWS urban energy balance to
compute thermal comfort metrics (Lindberg et al., 2016) and PALM4U (Salim et al., 2019),
among others.

2.7 Spatially explicit Cooling and Heating Degree Days Projections

Demand for indoor cooling and heating are a function of not only building infrastructure, but
also a location’s climate. As NYC’s climate warms due to rising temperatures, there are
potential consequences to energy consumption due to increased demand for indoor cooling
during the warm months and decreased demand for heating in winter.

Moreover, temperatures in NYC exhibit spatial variability due to a variety of land use and
meteorological factors. The spatial extent, geometry, and materials properties of built-up
surfaces play a crucial role in the surface energy balance of cities, mediating the portion of the
incoming solar energy that may result in warmer air (Oke, 1982). Sea and land breezes,
elevation, and other prevailing weather conditions also play a significant role in determining
temperatures through NYC and its broader metropolitan region (Bauer, 2020; Bornstein, 1968;
González et al., 2019; L. E. Ortiz et al., 2018).

Given the spatial variability of temperatures due to urban and geographical features of NYC and
the expected warming of the city throughout the 21st century, we conducted a simulation of
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typical historical and future climate in the city in order to estimate the impact of climate
change on cooling and heating loads. While changes to these heating and cooling load
indicators can be computed from readily available point records, there is still a gap on their
spatial variability in future climates. We address this gap with a combination of high resolution
physics-based modeling and computation of cooling and heating degree-days, a common
indicator of these loads.

a. Methods

Simulations of local climate in NYC were conducted using the Weather and Research
Forecasting Model (WRF) version 4.4 (Skamarock et al., 2019). WRF is a numerical weather
prediction model that solves the equations of motion of the atmosphere and its interactions
with the land and ocean surface. We configured the model using a 1 km spatial resolution to
approximate the neighborhood-scale centered around the city. We configured the model using
three nested domains of increasing resolution (Figure 2.7), with a domain of analysis (D03)
with 1 km grid spacing.

Figure 2.7.Map of WRF simulation domain showing the 9 km resolution parent domain (map
extent), intermediate 3 km resolution domain (D02) and the 1 km analysis domain (D01).

Model input for the simulations include meteorological and geographical data. For
meteorological data we used Bias-corrected model CMIP6 outputs (Xu et al., 2021). Xu et al
(2021) provide data at 1.25° x 1.25° horizontal resolution and 14 vertical levels. The data is
corrected using a Multimodel Ensemble (MME) method with 18 ensemble members from
CMIP6 and corrected using ERA5 reanalysis. The dataset contains three scenarios from the
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CMIP6 ensemble: (1) Historical, (2) SSP2-4.5, and (3) SSP5-8.5. Our approach to model future
climate here consisted of selecting a typical year based on monthly average temperatures for
two 30-year time slices from the CMIP6 data. To accomplish this, we took the median value of
monthly mean temperatures for 1981-2010 for the Historical scenario and 2070-2099 for the
two SSPs, then found the year closest to each median value for each dataset, as shown in
Figure 2.8. WRF simulations were then conducted for each of these selected years. The
simulations were based on a physics suite used in previous NYC studies that showed good
agreement with observations (González et al., 2019). For each simulation, a 2 month model
spinup (i.e., a period of time to allow the model to develop independent solutions from initial
conditions) was used, consisting of the November and December of the preceding year.

Cooling degree-days were computed as follows:

Where CDD is cooling degree-day, Tmean is the daily mean temperature, and Tbase , the baseline
temperature where cooling is needed, is 65°F. Similarly, heating degree-days are computed as:

Where HDD is heating degree-days.
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Figure 2.8. Kernel density estimates of the bias corrected historical, SSP2-4.5, and SSP5-8.5
monthly mean temperatures. The vertical lines represent the distribution median and the
corresponding closest year.

b. Results

WRF raw simulation results consist of 3-hourly data of all state variables in the model. HDD
and CDDs are computed from 2-meter air temperature, a diagnostic variable meant to describe
near-surface conditions. Daily mean temperatures for model outputs are warmer by the end of
the typical year, with daily mean temperatures of 13.4°C (56.1°F), 15.2°C (59.4°F), and 17.5°C
(65.5°F), with overall distributions shown in Figure 2.9. The spatial distribution across all three
scenarios is similar, with warmer temperatures over the NYC metropolitan area (Figure 2.10).
Temperatures also decrease closer to the southern coastline of Queens and Brooklyn, likely
due to the cooling effect of afternoon sea-breezes. In all three scenarios, the highest
temperatures occur west of the Hudson River in New Jersey. These results are consistent with
observation and modeling studies conducted in the region (Gedzelman et al., 2003; L. E. Ortiz
et al., 2018).
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Figure 2.9. Histogram of daily mean temperatures for the typical years from the historical
simulation (2010), SSP2-4.5 (2099), and SSP5-8.5 (2098).

Figure 2.10. Spatial distribution of mean daily temperatures for the three scenarios.

CDD and HDD results show a similar spatial distribution to daily mean temperatures, although
with opposing spatial gradients. CDDs are highest within NYC and east of the Hudson River in
New Jersey (Figure 2.11, top row). The temperature gradient linked to a southerly sea breeze
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is also more pronounced in CDDs due to these circulations being more prevalent during the
warm months when CDDs are computed.

CDDs increase across both end of century scenarios, with the highest changes occurring in
SSP5-8.5, the higher emissions pathway. Changes in CDD increase by 200-300 degree-days in
SSP2-4.5, and nearly double in SSP5-8.5. CDDs are highest in the urbanized NYC Metropolitan
Area due to the urban heat island effect. HDDs follow an inverse trend, decreasing as winters
grow warmer as a result of climate change. HDDs decrease by ~350 degree-days in SSP2-4.5
compared to Historical baseline, and plunge to less than 2000 degree-days in SSP5-8.5 (Figure
2.11, bottom row).
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Figure 2.11. Spatial distribution of cooling degree-days (top row) and heating degree-days
(bottom row) for each scenario.

c. Research Gaps

Although the work here leverages state-of-the-art high resolution climate models that bridge
the gap between coarse global models (~1° resolution) to the neighborhood scale, there are
several gaps that were not addressed in this work. One such gap is the simulation time limited
to a single typical year. True climatological time scales typically use 30-year time slices to
provide a range of the typical climate of a region. While the approach followed here displays a
typical year in terms of annual mean temperatures, future research could expand this to form a
multi-year ensemble.

Another limitation lies in the use of CDDs and HDDs themselves, which are common yet
incomplete measure of cooling and heating loads. These indicators only consider mean daily
temperatures and fail to account for sub-daily variability. This variability can be quite large,
particularly in transition months. Another limitation of degree-day indicators is that they do not
account for either population or infrastructure change and their impacts on energy
consumption. More recent advances have tried to address some of these gaps by using
population data to estimate population-weighted degree-day indicators (Kennard et al., 2022),
while others use advanced modeling to directly estimate electric loads based on combined
building energy and climate models (Ortiz et al., 2022). Nevertheless, this work showcases the
impact of year-round climate change on NYC’s demand for energy to maintain thermal

2.8. Sensitivity study of tropical cyclone (TC) climate change: Literature review

a. Summary

Hurricane Sandy caused New York City’s worst coastal flood and second largest storm surge in
at least 300 years (Orton et al., 2016) and occurred during our current period of rapid climate
change. This raises obvious concerns that tropical cyclone (TC) climatology change could be
causing worsened New York City storm surges. Research has shown atmospheric warming will
likely intensify TCs in the future (Emanuel 2005; Knutsen et al., 2020; Emanuel 2021). For the
United States Gulf Coast, two different approaches for simulating future TC storm surges have
revealed substantial future increases, which will increase future flood risk (e.g. Marsooli et al.,
2019; Yin et al., 2020). However, an assumption applied in creating NPCC coastal flood maps is
and continues to be that future coastal flooding in New York City will only change due to sea
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level rise. Here, we summarize findings from a review of recent literature on the impact of TC
changes on coastal flooding for the region.

An emerging consensus is TC climatology change will cause a small increase in New York City
storm surges (perhaps 10%) relative to the increase in extreme water levels due to sea level
rise. However, mixed results from different methods and climate models suggest continued
caution in using results of individual studies or methods. Methods applied to study the topic
have recently grown more diverse, which will help reduce these uncertainties. Until recently,
most studies neglected possible future changes in TC frequency, yet epistemic uncertainties in
the response of cyclogenesis to warming remain a fundamental challenge for projecting future
changes to storm surges (Lee et al., 2020; Sobel et al., 2021). As a result, there remains
insufficient evidence and consistency between studies to incorporate TC change into current
assessments of future New York City flood risk.

We recommend future projects and NPCC assessments embark on a comprehensive
assessment with multiple TC climatology change assessment methods and additional
researchers, to better understand future New York City coastal flood risk. This could help New
York City achieve its goal of properly quantifying and planning for high-end risk, more in-line
with its request for NPCC to use the 90th percentile sea level rise projections in future flood
maps.

b. Changes in storm surge: Past to present

Historical trends in storm surges were reviewed by NPCC3 and found (Orton et al., 2019):

No significant evidence in this region for larger storm tides due to the effect of climate
change on storms (e.g. Marcos and Woodworth, 2017; Wahl and Chambers, 2016).
Moreover, no quantitative evidence has been presented demonstrating that Hurricane
Sandy was intensified or its storm tide was increased or made more likely by climate
change (Lackmann, 2015; Mattingly et al., 2015). Sandy had hybrid cyclone
characteristics as it approached the region and therefore represents a relatively complex
case study (Galarneau et al., 2013; Zambon et al., 2014).

One recent study attributed a portion of Sandy’s damages and affected property and
population to anthropogenic climate change-driven sea level rise (Strauss et al., 2021), but did
not assess storm or storm surge changes.

c. Influence of future TC climatology change on coastal flooding

1. Review of methods
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Global climate models have major weaknesses in representing tropical cyclones (TCs) due to
coarse resolution and inadequate representation of physical processes (e.g. convection). As a
result, downscaling approaches are typically used to improve this understanding, including
statistical/ deterministic downscaling (e.g. Lin et al., 2012; Mayo and Lin 2022) and
deterministic dynamical downscaling (Camelo et al., 2020). Here, we review three approaches
that have been utilized to study how TC changes may affect storm surge.

A statistical/deterministic downscaling approach utilizes climate model data with simplified
hurricane models and hydrodynamic models to simulate storm surges, and then uses extreme
value analysis to determine probabilities of various coastal flood levels.

A deterministic dynamical downscaling approach embeds high-resolution regional weather and
flood models inside global climate model outputs, either directly or through implementation of
representative boundary conditions (Gutmann et al., 2018).

Lastly, pioneering efforts have begun to use the global climate models themselves in long-term
atmospheric-ocean simulation studies of TC and storm surge climate changes, though the
storms are very coarsely resolved (e.g. a one-degree global model grid) and storm surges
relatively muted (Yin et al., 2020).

d. Review of results

Resulting assessments of future changes to storm surge using the statistical/deterministic
approach have shown mixed results but landing between a finding of no change or a modest
increase in storm surge. However, differences with different climate models and different IPCC
assessment cycles (e.g. AR4, AR5) indicate moderate uncertainty in these results. Initial
results of the statistical/deterministic approach for New York City found projections using two
of four climate models show substantial increases in storm surge similar in magnitude to future
sea level rise (Lin et al., 2012).

Subsequent statistical/deterministic studies using similar methods found changes in storm
tracks may offset the intensity increase, resulting in relatively small changes in storm surges at
New York City (e.g. Garner et al., 2017). The most recent results with the
statistical/deterministic approach have converged toward relatively small increases in storm
surge that are about 5-10% as large as the increase due to sea level rise (Marsooli et al.,
2019).

Using the deterministic dynamical downscaling approach to study storm surge changes,
Carmelo et al., (2020) found climate change driven storm changes cause the inundation area
and extent of most historical storms to increase.
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Recent research studies have demonstrated that tropical cyclone frequency may decrease due
to climate warming (Chand et al., 2022) and uncertainties in future storm frequencies remain
too high to make confident predictions of the changes in effects in New York City (Lee et al.,
2021). Both the statistical/deterministic and dynamical downscaling approaches revised above
do not capture the effect of these changes (Sobel et al., 2021), and therefore may overestimate
the impact of climate warming and stronger TCs on future storm surges in New York City.

A way to study the complete effect of climate change on both storm frequency and intensity is
to apply the highest-resolution climate models to study the problem. Applying a climate model
for a 150-year simulation with a 1% per year increase in CO2, Yin et al., (2020) found the main
driver of increased coastal flooding along the East Coast would be sea level rise, with minimal
changes to storm surge climate.

e. Synthesis: Effects on future extreme floods and assessment uncertainty

Overall, two summary conclusions on future changes to New York storm surge can be drawn
from the studies reviewed above. An emerging consensus among several techniques has been
that TC climatology change will cause an increase in New York City storm surges, yet this would
be small relative to the increase in extreme water levels due to sea level rise (~10%). Also,
mixed results from different models and methods suggest continued caution in using results of
individual studies or methods, which are gradually becoming more diverse.

More broadly, other neglected factors should also be studied with regard to future flood risk,
including pluvial contributions that are likely to increase (e.g. Gori et al., 2022). Modeling of the
effect of rainfall on coastal flood zones is an additional useful future endeavor.

2.9. Sensitivity study of TC separation in extreme value analysis

a. Summary

A fundamental challenge with coastal storm hazard assessment for many mid-latitude areas is
tropical cyclones (TCs) are responsible for the largest events but occur infrequently relative to
extratropical cyclones (ETCs). Therefore, TC hazard data are non-ergodic, meaning that
distributions are typically under-sampled. As a result, in spite of large differences in TC and
ETC maximum intensities, observation-based assessments of surge, wind and rain hazards
typically merge data from TCs with far more numerous data from ETCs. Here, we explore the
utility and challenges of separating storm types for extreme value analysis (EVA) of coastal
hazards, which can include extreme rain, wind and storm surge. We use Monte Carlo
simulations of a large number of stochastic synthetic storm tide datasets to assess common
EVA approaches using both separated and merged TC and ETC data. Steps included: (1)
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developing a priori assumed probability distributions for TC and ETC that represent the U.S.
New York Bight and Southern New England; (2) sampling from these distributions to create
synthetic 50, 120 and 300-year datasets of TC and ETC storm tides; and (3) assess the
100-year storm tide with two methods: (a) a NOAA standard EVA practice with merged data
and (b) an approach that separates TC and ETC data before EVA. Results show the NOAA
approach underestimates the 100-year event by ~15% for any duration of historical data,
whereas the separated approach has lower bias and can provide unbiased estimates if using
longer datasets (e.g. 120 years). The separated approach suffers from greater random error,
however, and the longest possible datasets should be used to minimize uncertainty. This can
be accomplished using regionalized EVA (multiple locations) or supplementing tide gauge data
with other forms of data (e.g. reports in newspapers).

b. Introduction and Motivation

Tropical cyclones (TCs, including post-tropical cyclones) and extratropical cyclones (ETCs)
both can cause extreme winds, storm surge and rainfall, as well as compound flooding.
However, these storm types have different energy and moisture sources and as a result cause
different hazard intensity in terms of maximum wind speed, storm surge (Orton et al., 2016)
and rainfall rates. ETCs normally have a larger spatial extent and have wind speeds far below
the maxima exhibited by TCs (e.g. Dolan & Davis, 1992; Landsea & Franklin, 2013) and TCs can
have more abundant moisture. Each storm type has often been shown to exhibit different
univariate extreme value probability distributions (e.g. Orton et al., 2016).

For hazard assessment, the process of extreme value analysis (EVA) has the goal of estimating
the exceedance probability or return period for a given variable of concern. It requires
assembling data values representing each case of an extreme event, then fitting an extreme
value probability model to the data. Where TCs are relatively less common than ETCs, for
practicality a common assumption is often applied in EVA, that TC and ETC data can be merged
prior to fitting the distribution. This is a practical solution for using the limited available
historical data. This increases the number of data points and can often have the appearance of
reducing uncertainty, or at least its quantified estimates. However, the approach could be
problematic because of the maximum intensity differences between TCs and ETCs and our
specific interest in the extremes of their distributions. Thinking more broadly, many coastal
areas can also have rare extreme tsunamis, but for most purposes one would not mix in these
events into a flood hazard EVA, due to their far different physical behaviors and thus probability
distributions.

A long-time and widely used source of information on coastal flood hazards is the NOAA’s
Tides and currents “Extreme Water Levels” webpage. The resulting plots of return period
versus storm tide, which is total water level with the sea level rise trend taken out, often show
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good model/data fit except at the extremes (Figure 2.12). After Hurricane Sandy occurred and
its data included (the outlier in the top panel), the probability of Sandy’s storm tide was
estimated to be 1570 years (Sweet et al., 2013), in contrast to studies where TCs and ETCs
were analyzed as separate data populations (e.g. 100 years in FEMA, 2014; 260 years in Orton
et al., 2016).

Figure 2.12: Examples of cases where the most extreme storm tide events appear to be
outliers, outside the 95% confidence limits of estimated probability distributions: (top) New
York City at The Battery, (middle) Woods Hole Massachusetts, and (bottom) Charleston, South
Carolina (NOAA, 2024). The method used was Generalized Extreme Value distributions fitted to
annual maxima of combined population of TC, ETC events (Zervas, 2013).

The question addressed in the following pages, is “Could the approach of merging TC and ETC
data into one analysis lead to chronic underestimation across multiple coastal storm-driven
hazards?” The methodological approach of this research is to use a series of Monte Carlo
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analyses using synthetic storm event data representing a range of idealized U.S. East Coast TC
and ETC coastal flood hazard climates to assess different approaches to EVA. Assumed storm
tide distributions are randomly sampled to create different duration datasets of temporal
maximum (peak) TC and ETC storm tides that are then analyzed with different EVA techniques,
and results for 100-year return period events are compared with the known values. A key goal
is to assess whether we can improve the results with longer datasets or using different EVA
methods.

c. Methods

1. Idealized hazard curves

A set of idealized storm tide exceedance curves is created that loosely represents United
States New York Bight and southern New England TC and ETC coastal storm tides. These mimic
physical model-based curves for synthetic TC and historical ETC storm tides (FEMA, 2014 and
Orton et al., 2016, for New York and New Jersey).

The TC peak storm tide (htc) exceedance curves follow the Gumbel distribution, equivalent to

Generalized Pareto or Generalized Extreme Value Distribution with a shape parameter of zero.
A range of scale parameter (𝜎TC) is used, from 0.2 to 1.0 with steps of 0.1, forming a set of nine
exceedance curves. A location parameter x of 1 m is used, reflecting a minimal TC storm surge
in a region with typical highest astronomical tides of ~1 m above mean sea level. Thus, the

probability of a TC peak storm tide of 1 m P(htc>z) is similar to the annual frequency of storms

passing within 200 km, Ptc = ~0.3 (e.g. Lin et al. 2012; Orton et al. 2016). Resulting cases are

shown in Figure 2.13 with a strong similarity to htc return period curves for Atlantic City and

New York City (FEMA, 2014; Orton et al. 2016) and Woods Hole, Massachusetts.

A single ETC peak storm tide exceedance probability curve is utilized based on the Generalized
Extreme Value (GEV) distribution that represents water level extremes for NY Bight and
southern New England (e.g. Orton et al., 2016; Dullart et al., 2021). In this case, the location
parameter is again 1.0 m, the shape parameter is -0.1 and scale parameter is 0.2, reflecting a
lower slope to ETC storm tides in the return period plot (Figure 2.13). A frequency of ~20 ETC
events per year with peak storm tides exceeding 1 m is typical of the region, as with many
mid-latitude coastal regions of the world.
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Figure 2.13: Assumed storm tide return period curves for TCs and ETCs, along with analogs
along the U.S. East Coast. (a) TC curves are similar to those expected for Atlantic City, (b) for
NYC, and (c) for Woods Hole, while for simplicity the ETC curves were chosen to be the same
for all cases.

2. Monte Carlo simulated events

Stochastic event sets for htc and hetc are created from these distributions in Monte Carlo
simulations of historical periods of differing lengths (50, 120 and 300 years). Separately for
TCs and ETCs, each year has a Poisson-distributed integer number of events (Stedinger, 1993).
Each event’s peak storm tide is sampled from its respective CDF by choosing a random number
in the uniform distribution from 0 to 1, with one million divisions.
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Figure 2.14: Example of a synthetic time series of storm tides (each point a temporal
maximum during a storm event), including tropical cyclones (TCs), extratropical cyclones
(ETCs) and annual maximum storm tide values (red circles).

3. Separated and combined data EVA

For the EVA where TC and ETC data are combined, datasets of the annual maximum storm tide
(AMST) are created and GEV distributions fitted, mimicking the method used by NOAA (Figure
2.12; NOAA, 2024). To evaluate whether a Generalized Pareto Distribution (GPD) can improve
these results, subsets of peaks over a threshold are created, and GPD distributions are fitted
(e.g. Arns et al., 2013). The threshold (location parameter) is assigned based on the 95th and
99th percentile of all the event data, to enable comparison of the two different sets of results.

For the EVAs where TC and ETC data are kept separate, the ETC data are fitted with GEV and TC
data are fitted with GPD distributions, the latter using a location parameter of 1 m (no events
exist with lower values). The resulting annual exceedance probabilities for htc and hetcare
merged to give the probability of exceedance from either TC or ETC. The 100-year storm tide
estimates are interpolated as the 0.01 exceedance probability in the results and compared
across different methods and dataset lengths, alongside the a priori known 100-year storm
tide values from the chosen distributions that were shown in (Figure 2.13).

d. Results

Figure 2.14 shows results of the analysis, demonstrating the two potential shortcomings of a
short-duration EVA for estimating extreme events, bias and uncertainty. A substantial negative
bias is reflected by the median estimate being far below the 1:1 diagonal. Also, the individual
estimates show how a case of underestimation or overestimation of the 100-year event can
also arise due to error.

For 50-year datasets, which are often the extent of tide gauge data worldwide, a low-bias
exists for both approaches, though the bias for combined data is worse. However, the
separated-storms analysis shows a far greater range of results, and thus error is a problem.
This is due to the challenge of fitting a distribution to rare TCs for a short-duration historical
period.

For 120-year datasets, which are less commonly available but available for perhaps one-two
dozen sites in the United States, the combined-storm EVA continues to lead to bias, and the
range of results narrows to the point that the 95th percentile is close to the 1:1 line, meaning
about 90% of the estimates are too low. The separated-storm EVA shows very little bias, but
continues to show the potential for error.
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For the longest data duration of 300 years, the results show how the combined EVA continues
to have the same bias but now very rarely avoids a low bias. One GEV distribution cannot fit
two different physical processes, and thus the tail is poorly fitted. With 300 years of data, the
separated EVA is unbiased and the error reduced.

43



Figure 2.15: Monte Carlo simulation results across a wide range of storm tide climates based
on EVA of combined data (left panels) and the separated approach (right panels), for data
durations of 50 (top row), 120 (middle) and 300 years (bottom). Black points represent
individual Monte Carlo simulations, red dots median results, and errorbars 95% variation
ranges. Diagonal black lines show 1:1 correspondence (no bias), for comparison.

e. Discussion

It is well-known that reducing uncertainty in a given return period can require many times that
period of data, and thus estimates of 100-year floods generally have high error. But there has
been little attention paid to the potential low bias presented in this report. The result that a
commonly applied method can chronically underestimate extreme events for storm tides
raises attention to the danger of underestimating coastal storm hazards of any type. Prior to
Hurricane Sandy’s surprisingly large storm tide of 3.4 m, the estimated 100-year storm tide
using the GEV approach with mixed storm data was only 2.22 m (Zervas et al., 2013), 1.2 m
lower than Sandy, whereas by some measures (e.g. FEMA, 2014), Sandy was more similar to
the 100-year storm tide. Post-tropical cyclone Ida surprised many in New York City with
record-setting rainfall, but could this have been anticipated using separated storm types? Rain
IDF curves are based on merged datasets, including those from Atlas 14 and those in the
present Climate VIA study. Similarly, is there a hurricane wind disaster on the horizon for NYC
in the coming decades? A focus of Climate VIA and NPCC is on climate-change driven impacts,
but these results suggest more effort should be applied in assessing baseline hazards and their
uncertainties.

1. Common approaches to improved EVA for merged datasets

Increasingly, researchers and FEMA are utilizing EVA assessment methods that may alleviate
this bias. One example is the use of a POT approach with the GPD for fitting combined storm
data, which can focus the fit on the tail of the distribution. In Figure 2.11, we show results
where GPD was used with POT at the 95th and 99th percentiles of the storm event data. While
using a higher and higher cutoff percentile, the bias is reduced, but the scatter grows, and
much like the separated-storm approach, requires more years of data to have neither error nor
bias. Also, more focus on tail squanders the value of using a fuller ETC distribution and can
worsen the fit of the (single) distribution for 5-10-year events.
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Figure 2.16: Monte Carlo simulation results using 120 years of combined data using the GPD
with its threshold set as 95th percentile (left) and set as 99th percentile (center) and for
separated data (right).

Another approach, called “regionalization”, essentially adds more years of data by using
neighboring tide gauges across a region (Sweet et al., 2022). However, if using GEV, more years
of data do not help reduce bias, as shown herein. If using GPD, regionalization can be a good
solution (e.g. Sweet et al., 2022).

2. The TC/ETC separation approach

The simulation results illustrate several challenges and benefits of storm-type separation in
EVA of coastal storm hazards. While separation can reduce bias, it simultaneously increases
error because it requires longer datasets to have enough TC data to fit the TC distribution. In
the event that 300-year datasets are available, which is extremely rare globally, the results
show how bias can be eliminated and error can be minimal, with 95% error range of about +/-
14% (Figure 2.15 bottom right panel). While U.S. tide gauge sites do not include 200 or more
years of data, studies are increasingly supplementing these detailed observations with
qualitative historical data from news (e.g. Orton et al., 2016; MacPherson et al., 2023) or
paleoclimate data (e.g. Lin et al., 2014).

While the smaller uncertainty is often seen as a justification for using merged storm data, this
smaller uncertainty is a fallacy and the bias can be large. The uncertainty is aleatoric and based
purely on the population being studied, yet the probability distribution model (GEV alone) is
incorrect and the epistemic uncertainty is not quantified.

Separation of TC and ETC storm data is increasingly possible with publicly available storm track
databases. Storm track databases are available to identify when a storm surge comes from a
nearby TC (the HURDAT2 datasets) and even go back to the 1600s (Boose et al., 2001) and
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ETC track datasets are increasingly becoming available (e.g. Booth et al., 2016). Separation can
be accomplished by identifying TC and ETC events from storm tracks, or by identifying TC
events and treating all other storm surge events as non-TC.

Lastly, an approach that is particularly amenable to separate analysis of TCs and ETCs is the
use of synthetic storm models, as is increasingly done by catastrophe modelers, FEMA, and
USACE. A benefit of storm separation in EVA and also synthetic storms modeling is that climate
changes for different storm types are different and warrant separate treatment of TCs and
ETCs

f. Conclusions

This research studies hazard assessment methods using a Monte Carlo approach where
assumed hazard probability distributions are randomly sampled to study error and biases from
different extreme value analysis approaches. The research focuses on coastal areas where TCs
are far less frequent but more extreme than ETCs, as is the case for New York Bight and
southern New England. Similar results might be found for the Mid-Atlantic and South Atlantic
Bight, though ETCs are less frequent and TCs more frequent as you move southward along the
U.S. East Coast.

For a data period of 50 years, both combined and separated EVA for storm climates where TCs
are far less frequent than ETCs leads to low-bias in estimates of extremes (the 100-year storm
tide). Adding more years of data (e.g. 120 or 300 years) does not improve combined/GEV
results, but improves the separated EVA results. Fitting GPD in a combined data approach can
reduce bias but increases uncertainty unless more years of data are applied (e.g. using archival
data, regional EVA). Separation of TCs and ETCs raises error higher, so also requires more years
of data or regionalization.

Recommendations from this research include: (1) Consider using separate analysis of TCs in all
hazard assessments, including rain, coastal flooding and compound rain-surge, using observed
historical data where available, but also modeled events if helpful to reduce uncertainties; (2)
Standardized assessments of hazards that use merged data (e.g. rainfall IDF curves) should
test out the separated storm EVA approach. While rainfall records are shorter than those for
coastal floods, and uncertainties may be a problem, such an analysis can at least serve as a
tool to understand epistemic uncertainty. Acknowledging all uncertainties and not shying away
from a complete assessment of the potential high-end of hazards can help avoid weather and
climate surprises.
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2.10 Climate projection data
A primary deliverable for Task 2 is all data and assets for climate projections (Deliverable 6),
including data layers and metadata, as described more fully below.

The full set of climate data and climate projections produced for Task 2, which are identical to
the New York City Region files in the NYSCIA report, have been sent to the City. They are
preparing to upload the data into the Open Data portal. The Task 2 team has reviewed the
corresponding metadata and the revised files (to meet format requirements).

Land surface temperature data is available for download as a set of GeoTIFF raster files:
https://gmuedu-my.sharepoint.com/:u:/g/personal/lortizur_gmu_edu/ERR597juSWJDkxshVPI
_rIUBzKMA5mZvWfTqZnpCF9LCHg?e=9nLeVq

The files hold land surface temperature change data compared to a historical baseline
(2013-2022). Pixel size is 30-meter resolution. We note that thermal imagery native
resolution from Landsat is 60-meter, and is interpolated to the 30-meter grid resolution to
match other instruments on the satellite. Each file contains a single image, clipped to NYC
boundaries. Each image represents the increase over the baseline for a combination of
scenario and ensemble percentile.

File naming convention is as follows:

lst_aaaa-bbbb_cccc_dddd.tif

aaaa: Start of 30-year period
bbbb: End of 30-year period
cccc: Scenario (SSP and RCP combination
dddd: Intermodel percentile

References
Arns, A., T. Wahl, I. Haigh, J. Jensen, and C. Pattiaratchi (2013), Estimating extreme water level

probabilities: a comparison of the direct methods and recommendations for best
practise, Coast. Eng., 81, 51-66.

Bader, D., & Horton, R. (2023, December 21). New York State’s Changing Climate. New York
State Climate Impacts Assessment.
https://nysclimateimpacts.org/explore-the-assessment/new-york-states-changing-clim
ate/

47

https://gmuedu-my.sharepoint.com/:u:/g/personal/lortizur_gmu_edu/ERR597juSWJDkxshVPI_rIUBzKMA5mZvWfTqZnpCF9LCHg?e=9nLeVq
https://gmuedu-my.sharepoint.com/:u:/g/personal/lortizur_gmu_edu/ERR597juSWJDkxshVPI_rIUBzKMA5mZvWfTqZnpCF9LCHg?e=9nLeVq
https://gmuedu-my.sharepoint.com/:u:/g/personal/lortizur_gmu_edu/ERR597juSWJDkxshVPI_rIUBzKMA5mZvWfTqZnpCF9LCHg?e=9nLeVq
https://nysclimateimpacts.org/explore-the-assessment/new-york-states-changing-climate/
https://nysclimateimpacts.org/explore-the-assessment/new-york-states-changing-climate/


Bauer, T. J. (2020). Interaction of Urban Heat Island Effects and Land–Sea Breezes during a
New York City Heat Event. Journal of Applied Meteorology and Climatology, 59(3),
477–495. https://doi.org/10.1175/JAMC-D-19-0061.1

Booth, J. F., H. Rieder, and Y. Kushnir (2016), Comparing hurricane and extratropical storm
surge for the Mid-Atlantic and Northeast Coast of the United States for 1979–2013,
Environmental Research Letters, 11(9), 094004.

Boose, E. R., K. E. Chamberlin, and D. R. Foster (2001), Landscape and regional impacts of
hurricanes in New England, Ecological Monographs, 71(1), 27-48.

Bornstein, R. D. (1968). Observations of the urban heat island effect in New York City.
Journal of Applied Meteorology, 7(4), 575–582.
https://doi.org/10.1175/1520-0450(1968)007<0575:OOTUHI>2.0.CO;2

Braneon, C., L. Ortiz, D. Bader, N. Devinen, P. Orton, B. Rosenzweig, T. McPhearson, L.
Smalls-Mantey, V. Gornitz, T. Mayo, S. Kadam, H. Sheeraz, E. Glenn, L. Yoon, A.
Derras-Chouk, J. Towers, R. Leichenko, D. Balk, P. Marcotullio, and R. Horton, in press:
NYC Climate Risk Information 2022: Observations and Projections. Ann. N. Y. Acad. Sci.

Buzan, J. R., Oleson, K., & Huber, M. (2015). Implementation and comparison of a suite of heat
stress metrics within the Community Land Model version 4.5. Geoscientific Model
Development, 8(2), 151–170. https://doi.org/10.5194/gmd-8-151-2015

Camelo, J., Mayo, T. L., and Gutmann, E. D.: Projected climate change impacts on hurricane
storm surge inundation in the coastal United States, Front. Built Environ., 6, 588049,
https://doi.org/10.3389/fbuil.2020.588049, 2020.

Chand, S.S., Walsh, K.J., Camargo, S.J., Kossin, J.P., Tory, K.J., Wehner, M.F., Chan, J.C.,
Klotzbach, P.J., Dowdy, A.J., Bell, S.S. and Ramsay, H.A., 2022. Declining tropical
cyclone frequency under global warming. Nature Climate Change, 12(7), pp.655-661.

Chen, Z., Orton, P. M., Booth, J. F., Wahl, T., DeGaetano, A., Kaatz, J., and Horton, R.M.
(submitted), Influence of Storm Type on Compound Flood Hazard of a Coastal-Urban
Environment, Weather and Climate Extremes.

City of New York, 2021: State of Climate Knowledge 2021.

Davies-Jones, R. An efficient and accurate method for computing the wet-bulb temperature
along pseudoadiabats. Monthly Weather Review, 136(7), 2764–2785.
https://doi.org/10.1175/2007MWR2224.1 (2008)

Dolan, R., and R. E. Davis (1992), An intensity scale for Atlantic coast northeast storms, J.
Coast. Res., 8(4), 840-853.

48



Dullaart, J. C., S. Muis, N. Bloemendaal, M. V. Chertova, A. Couasnon, and J. C. Aerts (2021),
Accounting for tropical cyclones more than doubles the global population exposed to
low-probability coastal flooding, Communications Earth & Environment, 2(1), 135.

Emanuel, K., 2005. Increasing destructiveness of tropical cyclones over the past 30 years.
Nature, 436(7051): 686-688.

Emanuel, K., 2021. Response of global tropical cyclone activity to increasing CO 2: Results
from downscaling CMIP6 models. Journal of Climate, 34(1), pp.57-70.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E.
(2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6)
experimental design and organization. Geoscientific Model Development, 9(5),
1937–1958. https://doi.org/10.5194/gmd-9-1937-2016

FEMA (2014), Region II Coastal Storm Surge Study: Overview, prepared by Risk Assessment,
Mapping, and Planning Partners (RAMPP), p. 15, Federal Emergency Management
Agency, Washington, DC.

Galarneau, T.J., Davis, C.A. and Shapiro, M.A., 2013. Intensification of hurricane sandy (2012)
through extratropical warm core seclusion. Mon. Weather. Rev., 141(12): 4296-4321.

Garner, A.J. et al., 2017. Impact of climate change on new york city’s coastal flood hazard:
Increasing flood heights from the preindustrial to 2300 ce. Proceedings of the National
Academy of Sciences, 114(45): 11861-11866.

Gedzelman, S. D., Austin, S., Cermak, R., Stefano, N., Partridge, S., Quesenberry, S., &
Robinson, D. A. (2003). Mesoscale aspects of the urban heat island around New York
City. Theoretical and Applied Climatology, 75(1–2), 29–42.
https://doi.org/10.1007/s00704-002-0724-2

Ghanbari, M., T. Dell, F. Saleh, Z. Chen, J. Cherrier, B. Colle, J. Hacker, L. Madaus, P. Orton, and
M. Arabi, 2024: Compounding effects of changing sea level and rainfall regimes on
pluvial flooding in New York City. Natural Hazards, 1-24.

Gori, A., Lin, N., Xi, D. and Emanuel, K., 2022. Tropical cyclone climatology change greatly
exacerbates us extreme rainfall–surge hazard. Nature Climate Change, 12(2): 171-178.

González, J. E., Ortiz, L., Smith, B. K., Devineni, N., Colle, B., Booth, J. F., Ravindranath,
A., Rivera, L., Horton, R., Towey, K., Kushnir, Y., Manley, D., Bader, D., & Rosenzweig, C.
(2019). New York City Panel on Climate Change 2019 Report Chapter 2: New Methods
for Assessing Extreme Temperatures, Heavy Downpours, and Drought. Annals of the
New York Academy of Sciences, 1439(1), 30–70. https://doi.org/10.1111/nyas.14007

Gutmann, E.D., Rasmussen, R.M., Liu, C., Ikeda, K., Bruyere, C.L., Done, J.M., Garrè, L.,
Friis-Hansen, P. and Veldore, V., 2018. Changes in hurricanes from a 13-yr.

49



convection-permitting pseudo–global warming simulation. Journal of Climate, 31(9),
pp.3643-3657.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J.,
Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X.,
Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J.-N. (2020).
The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society,
146(730), 1999–2049. https://doi.org/10.1002/qj.3803

Horton, R., D. Bader, C. Rosenzweig, A. DeGaetano, and W.Solecki. 2014. Climate Change in
New York State: Updating the 2011 ClimAID Climate Risk Information. New York State
Energy Research and Development Authority (NYSERDA), Albany, New York.

Horton, R., Little, C., Gornitz, V., Bader, D., & Oppenheimer, M. (2015). New York City Panel on
Climate Change 2015 Report. Chapter 2: Sea level rise and coastal storms. Annals of
the New York Academy of Sciences, 1336, 36–44. https://doi.org/10.1111/nyas.12593

Jane, R., Wahl, T., Santos, V. M., Misra, S. K., & White, K. D. (2022). Assessing the potential for
compound storm surge and extreme river discharge events at the catchment scale with
statistical models: sensitivity analysis and recommendations for best practice. Journal
of Hydrologic Engineering, 27(3), 04022001.

Kennard, H., Oreszczyn, T., Mistry, M., & Hamilton, I. (2022). Population-weighted
degree-days: The global shift between heating and cooling. Energy and Buildings, 271,
112315. https://doi.org/10.1016/j.enbuild.2022.112315

Knutson, T. et al., 2020. Tropical cyclones and climate change assessment: Part ii: Projected
response to anthropogenic warming. Bull. Amer. Meteorol. Soc., 101(3): E303-E322.

Kopp, B. WetBulb.m. (2020). https://github.com/bobkopp/WetBulb.m

Lackmann, G.M., 2015. Hurricane Sandy before 1900 and after 2100. Bull. Amer. Meteorol.
Soc., 96(4): 547-560.

Lamie, C., Bader, D., Graziano, K., Horton, R. John, K., O’Hern, N., & Spungin, S. (2024). Chapter
2: New York State’s changing climate. In New York State Climate Impacts Assessment
[Interim version for public release].

Landsea, C. W., and J. L. Franklin (2013), Atlantic hurricane database uncertainty and
presentation of a new database format, Mon. Weather. Rev., 141(10), 3576-3592.

Lee, S. J. Camargo, A. H. Sobel, M. K. Tippett, Statistical-dynamical downscaling projections of
tropical cyclone activity in a warming climate: Two diverging genesis scenarios. J.
Climate 33, 4815–4834 (2020)

Lin, N., Emanuel, K., Oppenheimer, M. and Vanmarcke, E., 2012. Physically based assessment
of hurricane surge threat under climate change. Nature Climate Change, 2(6): 462-467.

50



Lin, N., P. Lane, K. A. Emanuel, R. M. Sullivan, and J. P. Donnelly (2014), Heightened hurricane
surge risk in northwest Florida revealed from climatological‐hydrodynamic modeling
and paleorecord reconstruction, Journal of Geophysical Research: Atmospheres,
119(14), 8606-8623.

Lindberg, F., Grimmond, C. S. B., Gabey, A., Huang, B., Kent, C. W., Sun, T., Theeuwes, N. E.,
Järvi, L., Ward, H. C., Capel-Timms, I., Chang, Y., Jonsson, P., Krave, N., Liu, D., Meyer,
D., Olofson, K. F. G., Tan, J., Wästberg, D., Xue, L., & Zhang, Z. (2018). Urban Multi-scale
Environmental Predictor (UMEP): An integrated tool for city-based climate services.
Environmental Modelling & Software, 99, 70–87.
https://doi.org/10.1016/j.envsoft.2017.09.020

Marcos, M. and Woodworth, P.L., 2017. Spatiotemporal changes in extreme sea levels along
the coasts of the north atlantic and the gulf of mexico. J. Geophys. Res., 122(9):
7031-7048.

Marsooli, R., Lin, N., Emanuel, K. and Feng, K., 2019. Climate change exacerbates hurricane
flood hazards along us atlantic and gulf coasts in spatially varying patterns. Nature
Communications, 10(1): 1-9.

Mattingly, K.S., McLeod, J.T., Knox, J.A., Shepherd, J.M. and Mote, T.L., 2015. A climatological
assessment of greenland blocking conditions associated with the track of hurricane
sandy and historical north atlantic hurricanes. Int. J. Climatol., 35(5): 746-760.

MacPherson, L. R., A. Arns, S. Fischer, F. J. Méndez, and J. Jensen (2023), Bayesian extreme
value analysis of extreme sea levels along the German Baltic coast using historical
information, Nat. Hazards Earth Syst. Sci., 23(12), 3685-3701,
doi:10.5194/nhess-23-3685-2023.

Mayo, T. L. & Lin, N. Climate change impacts to the coastal flood hazard in the northeastern
United States. Weather Clim. Extremes. 100453 (2022).

National Oceanic and Atmospheric Administration (NOAA). (2024). Extreme Water
Levels—NOAA Tides & Currents. Retrieved January 30, 2024, from
https://tidesandcurrents.noaa.gov/est/

New York State Energy Research and Development Authority (NYSERDA). 2020. “Climate
Needs Assessment for New York State,” NYSERDA Report Number 20-31. Prepared by
A. LoPresti, R. Horton, and D. Bader, Columbia University, New York, NY.
nyserda.ny.gov/publications

O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti,
R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., & Sanderson,
B. M. (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6.

51

https://doi.org/10.1016/j.envsoft.2017.09.020
https://doi.org/10.1016/j.envsoft.2017.09.020
https://tidesandcurrents.noaa.gov/est/


Geoscientific Model Development, 9(9), 3461–3482.
https://doi.org/10.5194/gmd-9-3461-2016

Oke, T. R., Kalanda, B. D., & Steyn, D. G. (1981). Parameterization of heat storage in urban
areas. Urban Ecology, 5(1), 45–54. https://doi.org/10.1016/0304-4009(81)90020-6

Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the
Royal Meteorological Society, 108(455), 1–24.
https://doi.org/10.1002/qj.49710845502

Ortiz, L. E., Gonzalez, J. E., Wu, W., Schoonen, M., Tongue, J., & Bornstein, R. (2018).
New York City Impacts on a Regional Heat Wave. Journal of Applied Meteorology and
Climatology, 57(4), 837–851. https://doi.org/10.1175/JAMC-D-17-0125.1

  Ortiz, L., Gamarro, H., Gonzalez, J. E., & McPhearson, T. (2022). Energy burden and air
conditioning adoption in New York City under a warming climate. Sustainable Cities and
Society, 76, 103465. https://doi.org/10.1016/j.scs.2021.103465

Orton, P., Georgas, N., Blumberg, A., & Pullen, J. (2012). Detailed modeling of recent severe
storm tides in estuaries of the New York City region. Journal of Geophysical Research,
117, C09030.

Orton, P.M. et al., 2019. New York city panel on climate change 2019 report chapter 4: Coastal
flooding. Ann. N. Y. Acad. Sci., 1439: 95-114.

  Orton, P. M., T. M. Hall, S. Talke, A. F. Blumberg, N. Georgas, and S. Vinogradov (2016), A
Validated Tropical-Extratropical Flood Hazard Assessment for New York Harbor, J.
Geophys. Res., 121, doi:10.1002/ 2016JC011679.

Raymond, C., Horton, R., Zscheischler, J., Martius, O., AghaKouchak, A., Balch, J., Bowen, S. G.,
Camargo, S. J., Hess, J., Kornhuber, K., Oppenheimer, M., Ruane, A. C., Wahl, T., &
White, K. (2020). Understanding and managing connected extreme events. Nature
Climate Change, 10(7), 611–621. https://doi.org/10.1038/s41558-020-0790-4

Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer,
N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., Kc, S., Leimbach,
M., Jiang, L., Kram, T., Rao, S., Emmerling, J., … Tavoni, M. (2017). The Shared
Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions
implications: An overview. Global Environmental Change, 42, 153–168.
https://doi.org/10.1016/j.gloenvcha.2016.05.009

Rogers, C. D. W., Ting, M., Li, C., Kornhuber, K., Coffel, E. D., Horton, R. M., Raymond, C., &
Singh, D. (2021). Recent Increases in Exposure to Extreme Humid‐Heat Events
Disproportionately Affect Populated Regions. Geophysical Research Letters, 48(19).
https://doi.org/10.1029/2021GL094183

52

https://doi.org/10.1016/0304-4009(81)90020-6


Salim, M. H., Schubert, S., Maronga, B., Schneider, C., & Cidek, M. F. (2020). Introducing the
Urban Climate Model PALM System 6.0. International Journal of Applied Energy
Systems, 2(1), 15–18. https://doi.org/10.21608/ijaes.2020.169937

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W.,
Powers, J. G., Duda, M. G., Barker, D. M., & Huang, X.-Y. (2019). A Description of the
Advanced Research WRF Model Version 4. UCAR/NCAR.
https://doi.org/10.5065/1dfh-6p97

Sobel, A. et al. Tropical cyclone frequency. Earth’s Future 9, e2021EF002275 (2021).

Sweet, W. V., B. D. Hamlington, R. E. Kopp, C. P. Weaver, P. L. Barnard, D. Bekaert, W. Brooks, M.
Craghan, G. Dusek, and T. Frederikse (2022), Global and regional sea level rise
scenarios for the United States: Updated mean projections and extreme water level
probabilities along US coastlines, National Oceanic and Atmospheric Administration.

Sweet, W., C. Zervas, S. Gill, and J. Park (2013), Hurricane Sandy Inundation Probabilities
Today and Tomorrow [in “Explaining Extreme Events of 2012 from a Climate
Perspective”], Bull. Amer. Meteorol. Soc., 94(9), S17-S20.

Strauss, B. et al., 2021. Economic damages from hurricane sandy attributable to sea level rise
caused by anthropogenic climate change. Nature Communications, 12(2720).

Towers, J., McPhearson, T., et al. (2023). NYC Town+Gown Climate Vulnerability, Impact, and
Adaptation Analysis: Interim Report. April 30, 2023.

Wahl, Jain, S., Bender, J., Meyers, S. D., & Luther, M. E. (2015). Increasing risk of compound
flooding from storm surge and rainfall for major US cities. Nature Climate Change,
5(12), 1093-1097.

Wahl, T. and Chambers, D.P., 2016. Climate controls multidecadal variability in us extreme sea
level records. J. Geophys. Res.

Ward, P. J., Couasnon, A., Eilander, D., Haigh, I. D., Hendry, A., Muis, S., et al. (2018).
Dependence between high sea-level and high river discharge increases flood hazard in
global deltas and estuaries. Environmental Research Letters, 13(8), 084012.

Xu, Z., Han, Y., Tam, C.-Y., Yang, Z.-L., & Fu, C. (2021). Bias-corrected CMIP6 global dataset for
dynamical downscaling of the historical and future climate (1979–2100). Scientific
Data, 8(1), 293. https://doi.org/10.1038/s41597-021-01079-3

Yin, J., Griffies, S.M., Winton, M., Zhao, M. and Zanna, L., 2020. Response of storm-related
extreme sea level along the us atlantic coast to combined weather and climate forcing.
J. Clim., 33(9): 3745-3769.

53

https://doi.org/10.21608/ijaes.2020.169937


Zambon, J.B., He, R. and Warner, J.C., 2014. Tropical to extratropical: Marine environmental
changes associated with superstorm sandy prior to its landfall. Geophys. Res. Lett.,
41(24): 8935-8943.

Zervas, C. (2013), Extreme Water Levels of the United States 1893-2010, NOAA Technical
Report NOS CO-OPS 067, NOAA National Ocean Service Center for Operational
Oceanographic Products and ServicesRep., 200 pp, Silver Spring, Maryland.

Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M., van den
Hurk, B., AghaKouchak, A., Jézéquel, A., Mahecha, M. D., Maraun, D., Ramos, A. M.,
Ridder, N. N., Thiery, W., & Vignotto, E. (2020). A typology of compound weather and
climate events. Nature Reviews Earth & Environment, 1(7), Article 7.
https://doi.org/10.1038/s43017-020-0060-z

54

https://doi.org/10.1038/s43017-020-0060-z


Task 3: Current and Future Extreme Heavy
Rainfall in New York City

55



Task 3: Current and Future Extreme Heavy Rainfall in New York City

Core Team Members:
● Franco Montalto (Drexel University)
● Bernice Rosenzweig (Sarah Lawrence College)
● Arthur DeGaetano (Cornell University)
● Philip Orton (Stevens Institute of Technology)
● Jerry Kleyman (Arcadis)
● Joel Kaatz (Arcadis)
● Mobin Rahimi Golkhandan (Drexel University)
● Rachel Lo (Sarah Lawrence College)
● Colin Evans (Cornell University)
● Ziyu Chen (Stevens Institute of Technology)
● Patrick Gurian (Drexel University)
● Dan Bader (Columbia University)
● Matina Shakya (Drexel University)
● Fiona Dubay (Sarah Lawrence College)

NYC Interagency Collaborators:
● Alan Cohn (NYC DEP)
● Greg Mayes (NYC DEP)
● Erika Jozwiak (MOCEJ)
● Hayley Elszasz (MOCEJ)

3.1 Key Messages
● Based on nonparametric statistical tests, between 1955 and 2022, total annual

precipitation has increased significantly at all NYC area gauges and the frequency of
events with >95th percentile peak and average intensities have increased significantly
at all of the NYC gauges. But while event frequency has increased, nonparametric trend
analyses do not suggest that extreme precipitation events (>95th and >99th percentile)
are getting larger, more intense, or are changing significantly in duration at NYC area
gauges. When considering all events (not just the extreme events), the nonparametric
analyses show statistically significant increases in peak and average intensities
throughout the NYC area.

● Parametric analyses suggest that computed extreme precipitation characteristics have
changed over time, and are heavily influenced by the occurrence of extreme events at
each gauging station location. Parametric analyses reveal increases in the 2-, 5-, 10-,
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25-, 50-, and 100-yr extreme rainfall events for durations of 1-hr through 24-hours at
all stations, when the analyzed record includes data after 1990.

● Future changes in daily extreme rainfall are greater in the newer CMIP6 generation of
climate models than in the previous CMIP5 models using LOCA method downscaling.
The 2-yr 1-day rainfall amount associated with the 2020-2070 future period is 15%
higher than the value reported by NOAA Atlas 14 under both higher SSP5-8.5 and lower
SSP2-4.5 emissions scenarios. The 100-yr 1-day rainfall amount associated with the
2020-2070 future period is 30% higher than the value reported by NOAA Atlas 14
under the higher SSP5-8.5 emissions scenario and about 20% than the Atlas 14 value
for lower SSP2-4.5 emissions.

● Differences in hyetograph shape (temporal distribution of precipitation intensity) can
yield significant differences in flooding simulated using hydrologic and hydraulic (H&H)
models. These differences are of the same order-of-magnitude as those associated
with the simulated impacts of forecasted climate change. H&H modeling suggests that
increases in flooding due to climate change are more pronounced for lower return
period (more frequent) storms than for higher return period (less frequent) storms,
because the less frequent storms already exceed the historical design level of service,
even without intensification of precipitation due to climate change

3.2 Objectives and Research Activities
Urban stormwater and other critical infrastructure systems are designed to withstand a defined
intensity and duration of rainfall, known as the ‘design storm’. For any given rain event, the
intensity of rainfall (defined as rainfall depth over a given duration) is associated with an annual
probability of occurrence, usually described by its reciprocal return period. Accurate
representation of the probability of rainfall intensity is thus critical for stormwater management
and for flood resilience planning and design. This information is most commonly presented as
site-specific Intensity-Duration-Frequency (IDF) curves, developed based on frequency
analysis of historic rainfall at specific locations and under the assumption of stationarity - the
idea that natural systems fluctuate within an envelope of variability that is unchanging with
time (Milly et al., 2008). With projections of amplified precipitation intensity through the 21st
century due to global climate change (Allan and Soden, 2008; Fowler et al., 2021b; Phahl et
al.,, 2017), the appropriateness of this approach to urban drainage design has recently been
called into question .

This issue is one of particular urgency for New York City, which is particularly vulnerable to
pluvial flooding, triggered when the local intensity of precipitation and associated runoff
exceeds the infiltration capacity of the land surface, and/or the conveyance capacity of natural
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or engineered drainage systems (Rosenzweig et al., 2018). When the intensity of precipitation
exceeds the design intensity used to compute peak flow rates to size drainage infrastructure,
stormwater can back up and inundate topographically vulnerable areas. Flooding can also
occur whenever the instantaneous rate of runoff presented to an inlet exceeds its interception
capacity, a situation that triggers inlet bypass and eventual runoff concentration at lower
elevation portions of the catchment. Due to the short (e.g. < 10 minute) time of concentration
of most urban catchments, downstream flooding due to inlet bypass can thus be triggered by
pulses of intense short duration rain events, commonly called cloudbursts. Cloudbursts may
occur alone as convective storms or be embedded within longer precipitation events with lower
average intensities.

Trends in historical precipitation amounts, intensities, and durations are highly variable due to
differences in the data used to evaluate them, and different approaches to precipitation
sampling and statistical analysis. The development of IDF curves that represent climate
change-induced nonstationarities in precipitation is also challenging due to persistent
uncertainties in how climate change will modify the frequency, intensity, and amounts of
precipitation in specific places, especially at the fine (subdaily) time scales at which pluvial
flooding typically occurs. Recent research suggests that the greatest increases in extreme
rainfall intensity may be for short-duration storms (National Weather Service 2021), that
changes in subhourly precipitation intensity may emerge sooner than changes in daily
intensities (Kendon et al., 2018), and that more work is needed to evaluate the impact of global
warming on short duration precipitation extremes in different locations (Barbero et al., 2019).

There is also emerging research suggesting that climate change may alter precipitation
patterns in ways that are not represented by IDF curves. IDF curves provide probabilistic
estimates of block (e.g. uniform) precipitation intensity for storms of specific intensities but do
not represent how precipitation is distributed temporally within the event. Also, if climate
change modifies the annual and seasonal pattern of precipitation, altering antecedent moisture
conditions, the occurrence of flooding in response to specific events could also change relative
to historical baselines. Thus, the occurrence of a given event must also be considered in its
temporal context.

Task 3 used a literature review, expert elicitation methods, analyses of historical and future
climatological data, and historical databases and media reports to explore why, how, and with
what impacts precipitation has, is, and will continue to change in New York City. We developed
future IDF curves for the city and used hydrologic and hydraulic modeling to explore the
implications of these changes and other rainfall characteristics on pluvial flooding.

Task 3 included the following subtasks:
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1. Subtask 1: Literature review regarding impacts of climate change on extreme
precipitation

2. Subtask 2: Expert elicitation process designed to better understand the routine types of
precipitation used in New York City policy and planning

3. Subtask 3: Historic heavy rainfall observations and event ranking
4. Subtask 4: Clausius-Clapeyron scaling analyses of observed rainfall
5. Subtask 5: Analysis of historical precipitation trends using non-parametric and

parametric approaches
6. Subtask 6: Development of future IDF curves for NYC
7. Subtask 7: Hydrologic and Hydraulic (H&H) Modeling to evaluate the implications of

design hyetograph assumptions and future IDF Curves on pluvial flooding in New York
City

Methods and results for each of these subtasks are described individually below.

3.3 Literature Review

A comprehensive literature review was conducted to provide context for Task 3 precipitation
analyses. Sources of information used for this review included peer-reviewed academic studies
published in scientific journals and technical reports utilized in stormwater management
practice. The full literature review is provided as a technical supplement for this report. Key
outcomes from this work are summarized here.

a. Literature Review: Previously published reports of historical precipitation trends

The comprehensive literature review described research on observed increases in annual
(Horton et al. 2015) and daily (Armstrong et al., 2014; Collins, 2009; DeGaetano, 2009;
Easterling et al., 2017; Frei et al., 2015; Georgakakos, 2014; Huang et al., 2017, Peterson et
al., 2013) precipitation in New York City and across the northeastern United States. However,
fewer studies have been conducted of trends in subdaily precipitation in this region. Over the
last decade, the City has commissioned several studies to investigate whether changes in the
five-year storm intensity are evident in gauge records. In an analysis of 15-minute resolution
precipitation data collected at LaGuardia, John F. Kennedy, Newark, and Central Park
Automated Surface Observing Systems (ASOS) weather stations between 1969-2010, NYC
DEP (2013) found no significant change in the relationship between the intensity and duration
of five-year storms of up to 100 minutes in duration, when compared both with data provided
in TP25, an IDF curve published by the U.S. Weather Bureau in 1955 (U.S. Weather Bureau,
1955). In 2015, NOAA released Atlas 14, Volume 10, an updated precipitation analysis that
included IDF curves for rain gauge sites in and around New York City (Perica et al., 2019) and
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NYCDEP repeated its analysis, again finding no change in the 5-year subdaily storm intensities,
compared to TP25.

The lack of a discernible trend in short duration events in prior studies is perhaps unsurprising,
given the sparse nature of rain gauges throughout the city and region. For example, in a remote
sensing (ground-based radar) study conducted in Germany, only 17.3% of severe hourly
precipitation events between 2001-2018 were captured in rain gauge observations, despite
their relatively dense gauge network (Lengfeld et al., 2020). Wright et al. (2013) also suggest
that sparse rain gauge networks are unlikely to represent historical trends in high intensity,
short duration (e.g. < 1 hour) summertime thunderstorms and other convective events.

b. Literature Review: Spatial Variability in Rainfall Across NYC

Through an analysis of daily, hourly, and subhourly precipitation data from 10 stations in and
around NYC, NYC DEP (2013) reports strong spatial variability in rainfall, with more rainfall
generally occurring in the southwest portion of the city, and no one gauge station
representative of the entire city. Analyzing high-resolution radar-based quantitative
precipitation estimates, Smith and Rodriguez (2017) found the highest daily and hourly rainfall
events peaked over the city center and an extended region downwind of the City, and
contrasted these findings to previous work. Notably, from a flooding perspective, they found
that flooding - as observed through 311 service requests - was correlated with localized
subdaily rainfall, which may not be detected at standard gauge sites.

c. Literature Review: Precipitation non-stationarity

Precipitation nonstationarity can result from a variety of factors including interannual to
multidecadal internal climate oscillations (Agilan and Umamahesh, 2017) and increased
urbanization (Shepherd and Burian, 2003). Along with these regional processes, it is likely
(>66% probability) that anthropogenic global warming has contributed to the intensification of
heavy precipitation that has been observed across North America (Seneviratne et al., 2021).
But while it is very likely (>90% probability; IPCC AR5) that extreme precipitation events will
be more frequent and more intense over most mid-latitude regions with climate change
(Seneviratne et al., 2021), the local quantitative projections of precipitation changes -
particularly at the subdaily durations needed for design and planning - still remain uncertain.

Global warming can impact precipitation patterns through mechanisms that vary in importance
by region, type of storm, and precipitation duration of interest. This review focuses on changes
to short-duration (subdaily) precipitation rates, which are most salient to stormwater
management in New York City. The most direct mechanism of precipitation intensification
results from the thermodynamic relationship between atmospheric temperature and the
saturation vapor pressure of water, which is known as the Clausius-Clapeyron (CC) Relation
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(‘warmer air holds more moisture'). Under the temperature conditions relevant to weather, the
amount of water vapor in the atmosphere at saturation will increase 6-7% per °C warming.
From this thermodynamic relationship alone, it would be expected that precipitation would
occur less frequently when the supply of atmospheric moisture is limited, since more moisture
would be required for the atmosphere to reach saturation, condense and precipitate. However,
under conditions where atmospheric moisture is not limited, there would be more precipitable
water with warmer temperatures and, in turn, higher rainfall rates once saturation is reached
(Trenberth et al., 2003).

Along with this direct thermodynamic effect, climate change can also influence short-duration
precipitation extremes through several key atmospheric processes that take place at micro- to
global spatial scales. At global scales, a fundamental effect of global warming will be the
thermal expansion of the warming troposphere and stratospheric cooling, resulting in an
increase in the height of the tropopause. Increased tropospheric heights will allow for deeper
convection and increased precipitation rates when local conditions are favorable (Lenderink et
al., 2017a; Loriaux et al., 2017; Santer et al., 2003).

Global warming can also influence precipitation patterns through changes in the continental-
scale atmospheric circulation patterns that determine the transport of moisture across the
globe. In the eastern United States, the climatology of large-scale moisture transport can be
described by 16 spatially distinct atmospheric transport patterns, each with a distinct
frequency and seasonality (Teale and Robinson, 2020). Anthropogenic climate change could
potentially alter the frequency or seasonality of these patterns, with implications for local
moisture availability and the probability of extreme precipitation in the future.

Large scale patterns associated with tropical cyclones (including tropical depressions, and
hurricanes) also play an important role in the climatology of extreme precipitation in the
northeast. This includes events associated with direct rainfall from tropical cyclones passing
over, or very close to New York City. It also includes extreme rainfall that results from the
remnants of tropical storms, such as the cloudburst associated with the remnants of Hurricane
Ida in 2021, or changes to atmospheric dynamics such as lifting, instability, or moisture
availability induced by tropical cyclones hundreds of kilometers away (Barlow, 2011). In an
observational analysis study of the continental United States, Barlow (2011) found that over
most of the Northeast, more than two‐thirds of all extreme daily rainfall events between 1975
and 1999 were linked to tropical cyclone‐related activity. In terms of the dynamics underlying
the forcing of extreme precipitation, Barlow’s study found the relationship between tropical
cyclones or their remnants on large-scale lift was much greater than the relationship with
moisture availability and buoyancy. It recommended further study of the interactions of
tropical cyclones with large-scale circulation patterns that induce lift, such as the jet stream.
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In a more recent study, Kunkel et al. (2020) found the tropical storms were directly responsible
for only 11% of extreme daily precipitation in the Northeast. This study did not consider the
indirect effects of tropical cyclones and their remnants, which suggest these dynamics may be
more important contributors to extreme precipitation than direct rainfall from tropical cyclones
passing through New York City. Studies on the contribution of tropical cyclones to subdaily
rainfall in the New York City Metropolitan region are not yet available in the academic literature.
In a modeling study, (Stansfield et al., 2020) found that intensity of tropical cyclone
precipitation increases under scenarios of both moderate (RCP 4.5) and extreme (RCP8.5)
climate change, but the total precipitation delivered by tropical cyclones decreased due to
concomitant reductions in the total number of tropical cyclones in the Atlantic Basin. These
results are consistent with those of other studies (Bacmeister et al., 2018; Chand et al., 2022;
Guttman et al., 2018; Knutson et al., 2020), which suggest competing impacts from increased
tropical cyclone precipitation rates and coinciding decreases in the total number of tropical
cyclones in a warmer climate.

The influence of climate change on mesoscale storm processes also has the potential to result
in more intense short-duration precipitation. Convective precipitation can occur in isolated
thunderstorm cells or as part of organized clusters described as Mesoscale (10s to 100s of
kilometers) Convective Systems (MCSs), which are often embedded into larger scale circulation
such as squall lines or Nor'easters. Organized convection is associated with increased
precipitation efficiency - the ratio of moisture that falls to the surface as precipitation to total
condensed moisture within a storm - and more intense precipitation (Fowler et al., 2021).
Moseley et al. (2016) found increased surface temperatures resulted in enhanced convective
organization and more extreme precipitation and that, more broadly, the interactions amongst
convective cells could be strongly influenced by large-scale changes in climate.

Historically, flash flooding in the Northeast has been more commonly associated with
disorganized, localized convective cells rather than organized MCSs, especially when compared
to other regions of the United States (Jessup and Colucci, 2012). The significance of potential
changes in convective organization in more extreme precipitation with climate change remains
uncertain and is still in early stages of investigation (Pendergrass, 2020), however, some initial
studies indicate the storm areas may be larger and more organized under climate warming
(Lenderink et al., 2017; Lochbiler et al., 2019. In a climate modeling study simulating an
unmitigated global warming scenario (RCP 8.5), Prein et al. (2017) found the total volume of
summertime precipitation increased with global warming due to both increased precipitation
rates and increases in the area over which precipitation occurs in organized MCSs.

Within individual thunderstorms, the increased moisture from warmer temperatures will
increase the release of latent heat, creating more instability and stronger updrafts within
thunderstorms and increasing precipitation rates beyond what would be expected from the
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increase in moisture availability alone. Assuming latent heat within a thunderstorm is
proportional to precipitation intensity and kinetic energy of rising air within a thunderstorm
increases proportionally with latent heating, precipitation intensity would be expected to
increase at a rate twice that predicted by the CC relationship alone (2CC-scaling; Lenderink et
al., 2017).

Changes in microphysical dynamics within thunderstorm clouds can also influence
precipitation efficiency and convective precipitation rates. Precipitation efficiency is
determined by the size distribution of hydrometeors (water and ice droplets) within
thunderstorm clouds and the extent to which these hydrometeors re-evaporate or are
re-entrained in updrafts before falling as precipitation to the ground. Singh and O’Gormam
(2015) found climatic warming resulted in an increase in the fall speed of water and ice
droplets within clouds. Higher fall speeds reduce the probability that a water droplet will
evaporate or be reëntrained3 in updrafts within the thunderstorm, resulting in higher
precipitation efficiency within any given storm. However, the fall speed of water droplets within
clouds can also influence updraft velocities, and in-turn precipitation rates (Bao and Sherwood,
2019; Parodi and Emanuel, 2009). Understanding the changes in these microphysical
processes are most significant for subhourly precipitation rates (Singh and O’Gorman, 2015).

GCMs are numerical simulations that represent the coupled dynamics of the atmosphere,
ocean, and land using mathematical equations (Figure 3.1). Climate models represent the
earth as a three-dimensional grid of cells that exchange matter and energy over discrete
intervals of time (time steps). Different GCMs may use different approaches to mathematically
represent earth system processes and are run at different spatial and temporal resolutions. As
a result, each GCM has strengths and weaknesses in their ability to represent different earth
system processes and regions of the planet. Since no single GCM is able to perfectly represent
earth's climate system, the results from multiple models are synthesized and evaluated in
ensemble experiments.

3 If a raindrop is reentrained into an updraft, it is prevented from immediately reaching the ground, thus
reducing rainfall rates.
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Figure 3.1: Generalized conceptual schematic for global climate models (Source: NOAA, Public
Domain).

GCMs are able to represent the dynamics of large-scale atmospheric processes and their
interactions across the globe. However, they are unable to represent atmospheric dynamics
that take place at finer-spatial scales or generate outputs at the spatial scales needed for
urban hydrological modeling and climate adaptation studies (Table 3.1; Maimone et al., 2019;
Yu et al., 2018). Their use in understanding how climate change will impact future
short-duration precipitation is dependent on additional downscaling methods (Lopez-Cantu et
al., 2020).

As a result, a wide variety of techniques have been developed to downscale GCM projections
from their native coarse spatial resolution to the resolution needed for adaptation researchers.
These downscaling techniques fall into two categories: statistical and dynamic.

Statistical downscaling uses observational datasets to identify statistical relationships
between the spatial distribution of precipitation parameters at fine-scale and what can be
represented at the coarse-resolution of a GCM. These relationships are then applied to
GCM-outputs to approximate fine-scale climate features in the future. The Localized
Constructed Analogs (LOCA) method (Pierce et al., 2021; Pierce et al., 2014) is an example of
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statistical downscaling. With this approach, a high-resolution, gridded observational time
series dataset is coarsened to match the spatial resolution of GCM outputs. For each GCM time
step, an historical analog that best matches the GCM output at selected grid cells that time
step is identified in the coarsened observational dataset. That fine-scale spatial distribution of
the parameter of interest associated with that analog is then reconstructed to create the
downscaled field.

Dynamic downscaling methods generate high-resolution projections directly by running a
high-resolution Regional Climate Model (RCM) with initial and lateral boundary conditions
provided from the outputs of GCM runs (Laprise et al., 2008). RCMs dynamically simulate local
climate and its future changes, and thus are not limited by assumptions of unchanging weather
patterns through the future. The highest resolution RCMs are ‘Convection Permitting’ (CPRCMs)
- these models are able to explicitly simulate the dynamics of convective precipitation that
occur within rainstorms - and their potential changes with global warming. While ensemble
experiments using CPRCMs may provide important insight on how climate change will impact
short-duration extreme precipitation, their utilization currently remains limited by their
computational expense and no ensemble studies are available for the U.S. Northeast.

3.4 Expert Elicitation

Subtask 3.2 explored how different types of precipitation data, specifically time series and
intensity-duration-frequency (IDF) curves, are currently used by various NYC programs and
agencies, particularly in stormwater and flooding planning and management. By identifying
how precipitation information is used along with how it may change, we can begin to identify
potential downstream impacts on stormwater management decision-making processes. We
were specifically interested in flows of information, key decision points, and relevant spatial
and temporal scales of precipitation data used in these processes, with a goal of understanding
how future precipitation projections can be incorporated into city planning and
decision-making.

Similar to the work of Jackson et al. (2012) and Eggers et al. (2011), we formulated a
stakeholder map, expert model, and information flow diagram to conceptually model how IDF
curves and precipitation information are used in the City. These conceptualizations were
initially developed from extensive literature reviews, mainly of key City and New York State
documents. We continued to iteratively refine these conceptual models through expert
feedback from interviews with City professionals and from quarterly Stormwater
Subcommittee (SSC) meetings, which convened stormwater management experts across the
United States. It was important for us to engage directly with users of precipitation information
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to ensure that the conceptualizations we developed addressed existing processes and
priorities of stakeholders.

a. Methods: Expert Elicitation

We conducted an extensive review and coded gray literature and City documents, many of
which were identified through key term searches or later referred to us by interviewees. We
searched documents for mentions of IDF curves and other precipitation information(frequency,
intensity, event, depths) used in City stormwater management.

Through referrals from our Interagency Collaborators, we interviewed New York City
stormwater and flooding management experts, including employees from the NYC Department
of Environmental Protection, Mayor’s Office of Climate & Environmental Justice, New York City
Emergency Management (NYCEM), Metropolitan Transit Authority, and Bureau of Water Supply,
in addition to private sector practitioners engaged in stormwater planning and design in the
City. Experts were interviewed about the use of IDF curves and other precipitation information
in their work. Interview questions were developed in collaboration with Interagency
Collaborators members.

Four quarterly Stormwater Sub-Committee meetings were convened via Zoom. These
meetings included experts in stormwater management who were identified through
recommendations from Interagency Collaborators partners, and the professional networks of
the Task 3 project team. During meetings, we elicited feedback on the information flows
diagram model of how IDF curves are used in various city agencies.

From the combination of literature reviews and expert elicitation, we developed the
stakeholder map, expert model and information flow diagram. The development of these
models was an iterative process beginning soon after initial interviews. These drafts were then
vetted in subsequent interviews and SCC meetings. We formulated a stakeholder map to
identify relevant direct and indirect users of precipitation data, and we used this map to inform
future interviews and surveys. We next developed an expert model, which is a formal
representation of stormwater infrastructure decision making to broadly identify design
standards and planning processes that may be affected by changes in precipitation
information. Lastly, we developed a detailed information flow diagram that represents how IDF
curves and other types of precipitation information are used in various City programs related to
stormwater and flooding management and planning. The information flow diagram identifies
the specific IDF curves, design storms, historical time series, and other types of precipitation
information used, their users, and relevant documents where their uses are codified.
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b. Results: Expert Elicitation

Figure 3.2-3.3 shows the resulting stakeholder map of users of precipitation information in
New York City. We identified major government agencies within New York City and State that
act as decision makers in regards to stormwater and flooding management: Department of
Environmental Conservation, Department of Environmental Protection (including Bureau of
Water and Sewer Operations and Bureau of Water Supply), New York City Emergency
Management, Department of Parks and Recreation, Department of Buildings, and Mayor’s
Office of Climate & Environmental Justice. The transactors include other government entities
not directly charged with stormwater decision making, consultants, and others who do work
that is influenced and/or determined by the stormwater decision-makers. The transactors are
typically working in service of a variety of active interests (e.g. developers, private companies)
and the broader public. The concentric circles in Figure 3.2 show the cascading impacts of
stormwater decisions across different sectors and interest groups.
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Figure 3.2: A stakeholder map for stormwater management in New York City.

Figure 3.3 presents a simple expert model of how stormwater infrastructure may be affected
by potential changes in precipitation. In this diagram, ovals are used to denote variables and
uncertain events; arrows indicate associations (causal or otherwise); decisions are represented
by rectangles; and diamonds indicate outcomes. This formalism highlights different aspects of
IDF decision-making, the conditions that trigger them, and how both are mapped to design
standards and other outcomes. The expert model also highlights parallel roles for resilience
and preparedness measures, other than hard infrastructure, that may directly and indirectly
depend on changes in precipitation information.
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Figure 3.3: An expert model of stormwater management in New York City.

Figure 3.4 is an information flow diagram that summarizes how precipitation information,
including specific precipitation events and precipitation time series, are used in New York City
stormwater management. This diagram identifies 1) the specific precipitation event used (e.g.
the return period of a storm and an associated duration), 2) which specific City programs and
stormwater management processes uses them, and 3) where the uses are codified in
documentation (if applicable). Additionally, Table 1 lists the key documents where the uses of
precipitation information are codified.

We found there are two major types of precipitation information used in the NYC stormwater
and flood management: specific precipitation time series and specific precipitation events. The
most common specific precipitation time series used is the 2008 JFK rainfall year, which is
used in development of Long-term Control Plans (LTCPs) for combined sewer overflow
management, green infrastructure performance analysis, and in the City Environmental Quality
Review. The 2008 JFK rainfall year is used for initial assessments but is understood not to
represent the full range of possible conditions. It was supplemented with an additional 10
years of rainfall data from other NYC rain gauges in the NYC Wastewater Resiliency Plan; the
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expanded time series is used in LTCP modeling. Lastly, long duration precipitation data (i.e.,
daily time steps) from GCM outputs is used by the Bureau of Water Supply to support reservoir
operations under climate change.

For specific precipitation events, five- and 10-year storms are the most common specific
precipitation events used in New York City stormwater management. As most NYC sewers are
designed for the five-year storm (some areas of NYC are designed for a three-year storm) with
a peak intensity of 5.95 in/hr., this also affects the design of other stormwater infrastructure.
For instance, the Staten Island Bluebelts, naturally engineered drainage systems, are typically
designed for a five-year 24-hour storm (some Bluebelts are designed for a 10-year 24-hour
storm). Both five- and 10-year storms are used in the design of private on-site stormwater
disposal systems and in the design of detention facilities, which in turn affects the sewer
operations volume criteria for Stormwater Construction Permit requirements. Other specific
precipitation events used in New York City stormwater management include the 90th
percentile storm of all 24-hour storms in a given year, which amounts to 1.5 inches in New York
City, as well as the 100-year storm. The 90th percentile storm is used for water quality volume
calculations according to State DEC, which in turn affects water quality and runoff reduction
criteria in Stormwater Construction Permit requirements. The 100-year one-hour storm is
specified in certain parts of the Plumbing Code, and the 100-year 24-hour storm is also used to
check that the FEMA base flood elevations are not exceeded in Bluebelt detention sites.

We found many key documents often did not reference the source of the precipitation
information used. For instance, a 100-year storm is referenced in Chapter 11 Storm Drainage of
the Department of Buildings Plumbing Code, but it is not specified if this 100-year storm
comes from TP25, NOAA Atlas 14, or another source. They also did not reference the duration
of the event, nor its temporal distribution. Furthermore, none of the key documents we
reviewed specified procedures of how new or updated precipitation information could be
incorporated into existing procedures. For instance, NOAA is expected to update its
Precipitation Frequency Data Server with Atlas-15, which will also include future IDF estimates
that take climate change into account, but it’s not clear how the new Atlas will be incorporated
in any NYC stormwater management programs we identified.
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Figure 3.4: Flows of precipitation information showing precipitation information (blue), organizational processes (red), and documentation
(green).
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Table 3.1 shows a list of key documents and key precipitation products relevant to New York
City stormwater and flooding management that incorporate the use of precipitation
information.

Table 3.1: Key documentation and products that use precipitation information in New York.

Date Document Use of precipitation information

1973 DEP Design Criteria and Procedures
for the Preparation of Drainage Plans
(Department of Water Resources
Drainage Section 1973)

Design flow calculations for storm and combined sewers –
Steel formula using coefficients for five-year storm in New
York City and six-minute time of concentration for
developed areas in New York City used

i=125/(t+15)

Rev. 2006 DEP Criteria for Determination of
Detention Facility Volume (Bureau of
Water and Sewer Operations Division
of Review and Construction
Compliance 2006)

Design criteria of detention facility volume –

Inflow rate intensity: Steel formula using coefficients for
10-year storm in New York City

Outflow rate: Steel formula using coefficients for five-year
storm in New York City and six-minute time of
concentration

i=140/(t+15)

2013 NYC Wastewater Resiliency Plan –
Climate Risk Assessment and
Adaptation Study (Department of
Environmental Protection 2013)

Five-year IDF curves (current for NYC sewer design +
updated curves based on rainfall gauge data from hourly
1969-2010 data at four NYC rain gauges from Northeast
Regional Climate Center at Cornell) for variety of durations
(six minutes to 100 minutes) used in Phase 1 –
Precipitation Analysis of Precipitation, Watershed, and
Tide Gate Analysis

2008 JFK “typical year” used for initial assessment of
annual conditions for LTCP modeling with a 10-year time
series used in the final analysis (including 2005 and 2006)
to account for future typical years (based on change
factors from NPCC Climate Risk Information report 2009
projections and rainfall intensity findings from Forsee et
al., 2010)

2021 DEP Stormwater Flood Maps (under
Stormwater Resiliency Plan)
(Department of Environmental
Protection 2021a)

Stormwater flood scenarios modeled – ~2 inches and ~3.5
inches in one-hour using Jupiter data (different but similar
to NOAA Atlas 14)

2017 Cloudburst Resiliency Planning
Study – Executive Summary
(Department of Environmental
Protection and Ramboll 2017)

Hydraulic models to simulate cloudburst flood (100-year
storm in 2015 and 2115); risk mapping for a 10-, 50-, and
100- year storm
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Long-Term Control Plans (2005 NYC
CSO Consent Order) (Department of
Environmental Conservation 2005)

2008 JFK Rainfall Year

2016 Green Infrastructure Performance
Metrics (part of 2012 CSO Order)
(Arcadis of New York, Inc. 2016)

2008 JFK Rainfall Year

2022 Climate Resiliency Design Guidelines
(NYC Mayor’s Office of Climate and
Environmental Justice 2022)

Use DEP Stormwater Flood Maps

2023 Citywide Green Infrastructure Plan
(part of 2023 CSO Consent Order
Modification – Green Infrastructure)
(Department of Environmental
Conservation 2023)

Specific GI asset types – various design storms (1, 1.25,
and 1.85 inches)

Amended
2023

Storage volume of private on-site
stormwater disposal system;
detention and retention tanks in
flood hazard areas (Plumbing Code
Chapter 11 Storm Drainage) (NYC
Buildings 2022)

Runoff rate uses i=5.95 in/hr (based on six min time of
concentration for the five-year storm)

Storage volume uses duration of 10-year storm (duration
is calculated as the time of concentration based on
Equation 11-5 in Chapter 11 Storm Drainage, and i is the
average rainfall intensity based on that duration)

Amended
2023

Roofs (Plumbing Code Chapter 11
Storm Drainage) (NYC Buildings
2022)

100-year one-hour rainfall rate of three inches/hour used
to size vertical conductors and leaders, gutters, building
storm drains, building sewers and any horizontal branches
of such drains or sewers, sizing of secondary (emergency)
roof drain systems

Amended
2023

Repair of CSOs installed prior to
effective date of this section (1109.1
of Plumbing Code) (Plumbing Code
Chapter 11 Storm Drainage) (NYC
Buildings 2022)

Size of a combination sanitary and storm drain or sewer
computed based on the 100-year one-hour rainfall rate of
three in/hr.

2021 NYC Green Infrastructure On-site
Design Manual (Department of
Environmental Protection 2021b)

H&H analysis performed using the Rational Method in
accordance with DEP standards (DEP’s 2012 Guidelines
for the Design and Construction of Stormwater
Management Systems) – rainfall intensity of 5.95 in/hr. for
the event with a five-year return period and a six minute
time of concentration

2012 Guidelines for the Design and
Construction of Stormwater
Management Systems (Department
of Environmental Protection and
Department of Buildings (cons.)
2012)

Calculating developed site flow – rainfall intensity of 5.95
in/hr. for the event with a five-year return period and a
six-minute time of concentration

2022 DEC Stormwater Management
Design Manual (Department of

Water quality volume – 90th percentile of all 24-hour
design storms (1.5 inches in New York City) based on
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Environmental Conservation,
Environmental Facilities Corporation,
and LaBella Associates 2022)

isohyetal map for NY State

2022 New York City Stormwater Manual
(appendix to Chapter 19.1 of the
Rules of the City of New York)
(Department of Environmental
Protection 2022)

Sewer operations volume criteria in Stormwater
Construction Permit requirements – 10-year storm

Water quality criteria in Stormwater Construction Permit
requirements – 90th percentile storm (1.5 inches in New
York City)

Runoff reduction criteria – 1.5-inch depth

c. Discussion and Conclusions: Expert Elicitation

Based on our Expert Elicitation research, we recommend the following for New York City
agencies to consider:

● In describing rainfall standards in City documentation, the duration of rainfall or the
method used to establish time of concentration should be included along with
precipitation frequency or return period.

● NYC should consider having a standardized interagency set of current and future IDF
curves.

● NYC should consider having a methodology for incorporating climate change-based
precipitation information and IDF curves into these city operations.

● NYC should consider convening annual SSC meetings to sustain discussion on how
precipitation observations are used in stormwater management and periodically
reevaluate how precipitation information is used in city operations.

● Following the research of Madajewicz (2020), NYC should also gather narratives of
individuals who have experienced floods in New York City. Personal narratives,
complemented with practitioner expertise, and enhanced precipitation and flood data
will evolve understanding of the vulnerability and impacts of extreme rainfall events,
leading to more holistic policy decisions.

We also identified some NYC programs that do not use precipitation information directly but
may be impacted by changes in precipitation. For instance, NYCEM regularly updates its plans
for flooding hazards and has categorized triggers (nuisance/low/moderate/high) associated
with activating its emergency response plans for flash flooding, but is currently reviewing how
to incorporate climate change into planning. Additionally, other programs are in the process of
explicitly incorporating precipitation information into its plans, such as the MTA’s Climate
Vulnerability Assessment. We recommend that when these programs explicitly incorporate
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precipitation information in their plans, they include procedures for how such information can
be periodically updated as new and higher resolution (i.e., spatially and temporally)
precipitation information is developed.

Many programs and agencies (DEP, MTA, MOCEJ, contractors with the city) point to a need for
subhourly precipitation data products that take into account climate change, as peak flow rates
occur usually at subhourly time steps and the minimum time of concentration encountered in
New York City is six minutes. More studies that temporally downscale climate models for
multi-model ensembles and multiple scenarios of climate change are needed.

Published documents describing programs in New York City do not highlight incorporation of
precipitation information in their planning. For instance, the NYC Wastewater Resiliency Plan
and updates to standards in the construction code for structures in the 1% annual chance
floodplain are based on FEMA’s 2022 Preliminary Flood Insurance Risk Maps, which account
for fluvial and coastal flooding but not pluvial flooding. And while fluvial flooding is directly
linked to precipitation, fluvial risk calculations use river discharge rates and do not incorporate
precipitation information. Communication with key City staff has confirmed that internal design
guidelines now consider inland flooding in the planning, pointing to an opportunity for the City
to engage experts and industry professionals to be better equipped to address these types of
risks.

3.5 Historic heavy rainfall observations and event identification
To date, most research on climate change and precipitation has focused on rainfall rates at
daily or longer time-scales. For this assessment, we characterize subdaily rainfall in the vicinity
of New York City and the upstate reservoirs that provide New York City’s municipal water
supply. Historic intense rainfall observed over different subdaily durations were ranked and
compared with narrative observations of pluvial flooding in New York City provided through the
U.S. National Weather Service Storm Data publication and Storm Events Database (NCEIa).

a. Methods: Historic heavy rainfall observations and event ranking

1. Precipitation Data Inventory

For all stations except Sikorsky Airport (KBDR), precipitation observations at hourly intervals
through 2012 were obtained from the NOAA DSI-3240 hourly precipitation dataset (NOAA,
2003). Hourly Data post-2012 was obtained from the Local Climatological Dataset (LCD;
NCEIb, 2023). The LCD was used for the full-record of hourly observations for the KBDR site.
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Hourly values provided through this merged dataset represent 60-minute accumulations
observed at 51 minutes after the clock-hour.

The most complete record of subhourly precipitation comes from the National Centers for
Environmental Information DSI-6405 and DSI-6406 data sets (NCEI, 2022). One-minute
precipitation data are available starting as early as 2000 in this data set. These data are
subject to very limited, automated quality control, and our initial analyses have identified many
data gaps even in the relatively short record of available data. As a result, analysis for this
report will focus on hourly precipitation observations.
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Figure 3.5: Locations of rain gauges used in study analyses.
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b. Observed pluvial flood events

We compiled a list of storms causing significant pluvial flooding events in New York City from
1986 to 2022, based on the NOAA Storm Data publications and Storm Events Database (NCEIa,
2023). Storm Data publications are published monthly by NOAA and contain records of
significant national storm occurrences and weather phenomena; they are digitized and
available online. The NOAA Storm Events Database contains searchable records from the Storm
Data publications and other sources. The NWS defines a significant storm event as having “met
local/regional/national threshold criteria, or generated impact, or was newsworthy, even [if] it
affected a small area (NWS, 2021).” Data on events are gathered from the NWS, as well as
outside sources including the media, law enforcement or other government agencies,
emergency managers, private companies, and trained individuals. Because the Storm Events
Database only contains flood and flash flood events after 1996, we manually examined the
monthly NWS Storm Data publications from 1986 to 2000 for mentions of floods, flash floods,
and urban flooding. The decision to begin in 1986 follows the work of Jessup and DeGaetano
(2008), where this year was identified as the start of consistent records of flash flooding in the
northeastern U.S.

Meteorological conditions associated with the storm were based on the storm’s episode
narrative. Socioeconomic impacts of storms causing flood and flash flood events were
assessed based on if the storm record’s episode narrative, event narrative, or notes mentioned
the following six categories: death, injury, property damage, potentially life-threatening
conditions, mass transit disruptions, and roadway disruptions. This work is detailed in a
Technical Supplement to this report.

To evaluate the contribution of compounding by high tide events, data from tide gauges
maintained by the U.S. Geological Survey (USGS) and NOAA were utilized. The USGS provides
data on daily tidal levels at Jamaica Bay at Inwood Station, and NOAA provides data on daily
tidal levels at The Battery, King’s Point, Bergen Point West Reach, and Willets Point. Data on
maximum daily tidal levels (i.e. highest high-water relative to NAVD88 or MHHW) were
downloaded for all five of these stations from Jan. 1, 1986, to Dec. 31, 2022, or where data
were available within this timespan. Table 3.2 shows the data availability at these five stations,
as well as the minor, moderate, and major coastal flooding thresholds from NWS NY.

Table 3.2: NYC tide gauges and NWS flood-stages used in historic flood event analyses.

Station Data Availability Below minor
coastal
threshold

Minor coastal
threshold

Moderate
coastal
threshold

Major coastal
threshold

78



USGS
01311850
Jamaica Bay at
Inwood NY

06/11/1979 -
12/31/2022*

< 4.4’ >= 4.4’ & < 5.1’ >= 5.1’ & <5.9’ >= 5.9’

The Battery, NY
- Station ID:
8518750

12/01/1978 -
06/06/1996;
11/20/1997 -
12/31/2000;
05/01/2001 -
01/31/2004.
06/01/2004 -
07/31/2023

< 4.38’ >=4.38’ & <
5.68’

>= 5.68’ & <
6.88’

>= 6.99’

Kings Point, NY -
Station ID:
8516945

11/01/1998 -
12/31/2022

< 6.29’ >= 6.29’ & <
6.79

>= 6.79’ & <
8.79’

>= 8.79’

Bergen Point
West Reach, NY
- Station ID:
8519483**

09/18/1981 -
10/01/1992;
11/29/1993 -
12/03/2009;
03/23/2010 -
07/31/2023

< 1.7’ >= 1.7’ & < 3.0’ >= 3.0’ & <4.1’ >= 4.1’

Willets Point, NY
- Station ID:
8516990***

10/01/1979 -
11/14/2000

< 6.29’ >= 6.29’ & <
6.79

>= 6.79’ & <
8.79’

>= 8.79’

** All coastal threshold values are relative to NAVD88 except Bergen Point West Reach values, which are relative to
MHHW.
*** Willets Point coastal threshold values use Kings Point threshold values, as tides and water levels are fairly
similar at the two stations, and they are only a few kilometers apart, which leads to very little difference and nearly
interchangeable data.

For the date of each storm, we retrieved the observed daily highest high tide level at each of
the five stations (if data was available for each gauge). We compared the observed daily
highest high tide level to the minor, moderate, and major coastal flood thresholds at the
station, and determined if a coastal flood threshold was exceeded on that day.

c. Results: Observed flood events

From 1986 to 2022, we identified 170 unique storms (Figure 3.6) that caused significant
pluvial flood impacts in New York City based on the NCEI Storm Events Database (1996-2022)
and monthly NCEI Storm Data Publications (1986-2000). Based on the episode narratives, six
of these flooding events were associated with tropical cyclones passing through or near New
York City, while 16 were tropical-associated (tropical remnants, predecessor events, or other
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storms that ‘tapped’ moisture from tropical cyclones that did not pass through or near the city).
A total of 45 floods were driven by extratropical cyclones, while 40 floods were driven by
frontal systems not associated with an extratropical or tropical cyclone. The remaining 63
storms could not be associated with one of these four agents based on information provided in
their Episode Narrative.

Figure 3.6: Time series of observed pluvial flooding impacts, based on narrative reports in the
NWS Storm Data publication and Storm Events Database, by year from 1986-2022 (n=170).

As shown in Table 3.3, the majority of pluvial flood events (85%) occurred when the coastal
flooding threshold value was below minor across all five gauges examined, indicating the
flooding occurred in the absence of compounding by high tides.

Table 3.3: Number and percentage of storms that occurred when a coastal flooding threshold was
reached at one of five tidal gauges in the New York City area that day.

Tidal gauge Below minor Minor Moderate Major

Jamaica Bay (n=156) 136 (87.1%) 17 (10.9%) 1 (0.64%) 2 (1.3%)
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The Battery (n=166) 156 (94%) 8 (4.8%) 1 (0.6%) 1 (0.6%)

Kings Point (n=118) 118 (100%) 0 (0%) 0 (0%) 0 (0%)

Bergen Point (n=165) 151 (91.5%) 12 (7.27%) 1 (0.6%) 1 (0.6%)

Willets Point (n=53) 51 (96.2%) 0 (0%) 1 (1.9%) 1 (1.9%)

Any gauge (n=170) 145 (85.3%) 21 (12.4%) 2 (1.18%) 2 (1.18%)

Figure 3.7 shows a count of the 170 storms by month. Nearly half of the 170 storms identified
occurred during the months of July or August (46%). The six months from November to April
accounted for only 11% of storms; five winter storms included narratives that described
rain-on-snow or -ice events. Figure 3.8 shows the diurnal period of the storms, based on the
storm’s recorded begin times. Most intense rainfall events associated with flooding (40.7%)
began in the afternoon, defined here as the period from 12 p.m. to 6 p.m.

Figure 3.7:Monthly distribution of NCEI storms from 1986 to 2022 (n=170).
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Figure 3.8: Diurnal period of NCEI storms from 1986 to 2022 (n=167), based on the storm’s
recorded begin times. 40.7% of rain events associated with significant flooding occurred in the
afternoon (12 p.m. to 6 p.m.).

d. Results: Comparison of Observed Heavy Rainfall and Significant Pluvial
Flooding

The top seven hourly observed rainfall accumulations at the three long-record rain gauges
located in New York City and Newark Liberty Airport are presented in Table 3.4. Only three
storms (Post-Tropical Cyclone Ida on 9/1/2021 and thunderstorms on 7/17/95 and 8/8/2007)
resulted in highest-ranked hourly rainfall accumulations that were observed at more than one
of the city gauges. At the three NYC sites, all observed rainfall accumulations above 1.75
inches in an hour that occurred after 1986 (when NWS flooding reports are available) were
associated with significant pluvial flooding recorded in the Storm Data publication and Storm
Events Database. Most significant pluvial flooding events were not associated with
observations of extreme rainfall at any of the NYC-area rain gauges or at any duration (e.g. 1
hr., 2 hr., 3 hr., 24 hr.; see Technical Supplement), suggesting a denser network of sustained
rain gauges is needed to represent localized intense rainfall that can still result in significant
flooding in the City.
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Table 3.4: Top seven hourly rainfall accumulations observed at long-record rain gauges in New
York City and at nearby Newark Liberty Airport. Observed rainfall-hours shaded red are those
that were associated with significant flooding recorded in the Storm Data publication or Storm
Events Database. Gray-shaded rainfalls occurred before 1986.

Rank Newark Liberty Airport
(KEWR)

Central Park
(KNYC)

LaGuardia Airport
(KLGA)

Kennedy Airport
(KJFK)

Time
(EST) Precip (in.)

Time
(EST)

Precip
(in.)

Time
(EST)

Precip
(in.)

Time
(EST)

Precip
(in.)

1 9/1/21 19:00 3.62 9/1/21 20:00 3.47 9/1/21 20:00 2.8 7/31/96
11:00

2.88

2 7/21/06
16:00

2.63 7/17/95 23:00 1.95 7/15/97 19:00 2.44 6/30/84
12:00*

2.45

3 8/17/74
17:00

2.04 8/10/06 19:00 1.9 8/17/98 14:00 2.09 8/14/11 4:00 2.41

4 7/17/95
23:00

2.00 8/21/21 22:00 1.84 11/4/50 23:00 1.97 6/30/84
11:00

2.15

5 5/27/91
23:00

1.95 9/8/04
7:00

1.76 7/17/95 23:00 1.97 8/8/07
6:00

2.04

6 8/4/03 15:00 1.92 6/3/91 22:00 1.75 8/8/07
6:00

1.87 8/28/83
21:00

1.88

7 8/8/07 5:00 1.82 8/14/05 19:00 1.7 7/6/75 17:00 1.83 8/20/91
16:00

1.84

e. Conclusions and Discussion: Historic heavy rainfall observations and event
ranking

Observations of subdaily rainfall in New York City are limited. Quality controlled-hourly data are
available from the mid-20th century for three sites within New York City (Central Park,
LaGuardia Airport, JFK); there are extensive gaps in the record at JFK. Long-record hourly data
is also available at nearby regional sites, including Newark Airport (located in close proximity to
Staten Island) and Sikorsky Airport in Bridgeport, CT. Subdaily rainfall observations are limited
in the vicinity of New York City’s municipal reservoir watersheds, with the closest long-record
site located at Albany International Airport. Subhourly data is only available for the 21st
century (< 20 years) and is not quality-controlled by the U.S. National Weather Service (NWS)
or NCEI.
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Since 1950, there have been 13 observations of precipitation greater or equal to two inches in
an hour at the four long-record rain gauges in and adjacent (Newark Liberty Airport) to NYC.
Only three of these observations occurred during the same storm (Post-Tropical Cyclone Ida on
9/1/2021 at Newark Liberty Airport, Central Park, and LaGuardia Airport), suggesting intense
short-duration rainfall occurs at highly-localized spatial scales in New York City. However, it is
important to note that short-duration (e.g. 60-minute) rainfall events are likely to be
underrepresented based on hourly observations, since accumulation can be split across the
clock hour (see Technical Supplement).

Pluvial flooding can be associated with cold fronts, warm fronts, extratropical closed
low-pressure systems/Nor’easters, tropical cyclones and post-tropical cyclones. Pluvial
flooding is most frequent in summer, but has occurred during all seasons. Observed rainfall
accumulations of 1.75 inches in an hour at stations within the city were associated with
significant pluvial flooding impacts. In the absence of pluvial flood management, the frequency
of impactful pluvial flooding will increase with increased frequency of short-duration intense
rainfall (See Subtask 3.6).

In addition, over the past four decades, there have been many impactful pluvial floods in New
York City that cannot be associated with recorded extreme precipitation at the regional gages,
suggesting the current spatial distribution of rain gauges in New York City is inadequate to fully
characterize pluvial flood risks. Most observed pluvial floods in New York City were not
compounded by high tides, indicating that intense rainfall, alone, can cause significant flooding
impacts in the city.

Based on this work, we recommend the following:
● The development of standardized quality-control procedures for subhourly rainfall
● The establishment of a network of maintained and quality-controlled subhourly (e.g.

one-minute) precipitation gauges across New York City and the upstate watersheds that
supply NYC’s municipal water to improve characterization of intense rainfall, support
continued trends analyses, and identify thresholds for impactful pluvial flooding.

3.6. Clausius-Clapeyron Scaling Analyses of Observed Heavy Rainfall

Clausius-Clapeyron (CC) scaling rates can provide important insight on the climatology of
short-duration precipitation (Fowler et al., 2021). In a given location, if the relationship
between precipitation and temperature follows what is predicted by the CC Relationship
(CC-scaling rate; 6-7% C-1), it is likely the relationship between temperature and precipitation
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is dominated by thermodynamics and moisture is not limited. When scaling deviates from the
CC-scaling rate, it is an indicator that dynamic meteorological processes are more significant.

Many recent studies (Lenderink et al., 2017, Martinkova and Kysely, 2020; Najibi et al., 2022;
Pérez Bello et al., 2021; Pumo and Noto, 2021; Steinshchneider and Najibi, 2022) have utilized
dewpoint temperature, rather than the standard dry-bulb temperature as the covariate for
assessment of CC-scaling rates. Dewpoint temperature is the temperature to which air would
need to be cooled (assuming constant pressure) in order to be saturated and for water to begin
condensing. It can be used as a metric that describes both dry-bulb (standard) temperature
and atmospheric moisture. When used as a covariate for CC-scaling, it avoids the need to
assume that atmospheric moisture is not limiting - higher dewpoint temperatures represent
conditions of both high temperature and high precipitable water.

a. Methods

Investigations into CC scaling were conducted for four of the regional weather stations:
LaGuardia Airport (KLGA), Newark Liberty Airport (KEWR), Bridgeport Sikorsky Airport (KBDR)
and Albany International Airport (KALB). Central Park, New York (KNYC) and JFK Airport (KJFK)
were not included in this analysis due to gaps in the dewpoint temperature or precipitation
data records, respectively. In contrast to the precipitation trends analysis, described below,
which focuses on precipitation events, the CC analysis utilizes hours during which there was
non-zero precipitation, for which dry-bulb and dewpoint temperature data were both available.
A database of this data was created, following the methodologies of Lenderink and Van
Meijgaard (2008), Utsumi et al. (2011) and Lenderink et al. (2017), as delineated below.

For hours with non-zero precipitation at each station, the corresponding dry-bulb, and
dewpoint temperatures were organized into 2 °C bins over the following ranges: 0-34 C for
dry-bulb temperature and 0-26 C for dewpoint temperature. Even numbers were used to label
the bins (e.g. bin 14 includes temperatures that were >14 and < 16). Next, for the hourly
precipitation values in each temperature bin, the 90th, 95th and 99th percentile precipitation
intensities were calculated. Relative frequency plots depicting the percentage of 99th
percentile exceedances in each dry-bulb and dewpoint temperature bin were produced.
Finally, plots of log-transformed hourly precipitation intensity versus temperature were
created, with lines corresponding to the expected CC relation (e.g. 7% increase in hourly
precipitation per degree Celsius) superimposed on the plots for reference purposes. The CC
relationship is represented using an exponential equation: P=1.07^T (Utsumi, Lenderlink,
personal communication).

Because it is conceivable that a given hour of precipitation was triggered by thermodynamic
conditions that preempted it, the analysis described above was repeated using the highest
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dewpoint temperature value recorded in a three-hour window preceding each hour of
precipitation (instead of the temperature values at the time of rain). The original approach is
referred to as Method #1, and the approach using the three-hour window for dewpoint is
referred to as Method #2.

To investigate whether CC scaling might be changing through time as a result of climate
change, Method #1 and Method #2 were each performed for two separate and
non-overlapping time periods (e.g. 1955-1989, and 1990-2022).

b. Results

Figures 3.9 and 3.10 depict the percentage of 99th percentile values in each dry-bulb and
dewpoint temperature bin for each gauge. The plots show that for all stations, except for
Albany, more than 50 % of the extreme precipitation hours occurred between the bins 16-22
and 16-20 for dry-bulb temperature and dewpoint temperature, respectively. Albany’s
percentages of extreme precipitation hours are distributed more broadly over a larger range of
temperature values, spanning bins 0-22.

Figure 3.9: The distribution of long-term 99th percentile exceedances binned by temperature.
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Figure 3.10: The distribution of long-term 99th percentile exceedances binned by
temperature.

The observed scaling relationships are presented in Figures 3.11-3.13, along with multiple
instances of the Clausius-Clapeyron scaling rate (dashed lines) for comparison. Positive slopes
close to those of the CC lines were observed for most curves. As expected, all plots in both
periods show an abrupt decline in slope after 20-24 C, attributed to the lesser number of
low-probability extreme events at higher temperatures. The sudden decline is more striking in
the more distant past (e.g. 1955-1989), than in the more recent past (e.g. 1990-2022), which
could be an indication of an increase in the frequency of extreme precipitation in the higher
temperature bins over time.

The most significant finding is the slopes of all three curves, for all four stations, in both time
periods, using both methods for selecting the dewpoint temperature, are close to the slope of
the lines representing the CC relationship. In some segments, the curves representing more
extreme precipitation (e.g. 99th percentile) follow the CC relationship more closely than the
curves representing the less extreme precipitation, and several of the curves have slightly
steeper slopes than the CC lines in the upper ranges of temperature (just before the drop off).

Comparing results across gauges, Albany generally presents lower precipitation intensities at
all percentiles (compared to the NYC metro gauges) but shows similar evidence of CC scaling.
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In conclusion, hourly precipitation intensities show evidence of CC scaling over most of the
temperature range, with slightly higher slopes in the upper range of temperatures (both
dry-bulb and dewpoint) in which extreme precipitation intensities were observed.

Station/
Period

1955-1989 1990-2022

KBDR

KEWR
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KLGA

KALB

Figure 3.11: Extreme hourly precipitation intensity vs. dry-bulb temperature for distant (left)
and recent (right) past.
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Station/
Period

1955-1989 1990-2022

KBDR

KEWR
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KLGA

KALB

Figure 3.12: Extreme hourly precipitation intensity vs. dewpoint temperature for distant (left)
and recent (right) past.
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Station/
Period

1955-1989 1990-2022

KBDR

KEWR
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KLGA

KALB

Figure 3.13: Using a three-hour window for the maximum dewpoint temperature before the
precipitation occurrence.
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3.7 Analysis of historical precipitation trends using non-parametric and parametric
approaches

Subtask 5 quantifies historical trends in New York City extreme precipitation events. This task
was challenging because, as described in Subtask 4, subdaily rainfall data is limited in
availability and rainfall extremes are highly localized and not necessarily represented in the
data record associated with any one particular gauge. Different approaches can be utilized to
evaluate historic trends, each based on different assumptions, testing different hypotheses,
and providing different levels of sensitivity. In general, parametric methods - the classical
approach to development to IDF curves - are affected by tail variability, meaning that the
occurrence of one or more extreme events can significantly change the extreme rainfall
probabilities computed for a particular gauge. However, this approach is the most appropriate
method for assessing changes in the most extreme rainfall amounts (those that on average
occur less than once per year and even as infrequently as once or twice in 100 years), and is
particularly necessary when inferring the probability of extreme events from relatively short
data records. One or two extreme events can significantly alter the statistical distribution,
especially for the most extreme rainfall values (e.g. the 100-yr. storm); thus, changes with time
are best interpreted regionally rather than at any one particular station. In contrast,
non-parametric methods are not based on specific assumptions about distributional form
which makes them generally applicable, but less sensitive to the occurrence of specific
extreme events. As such, they may not be able to detect subtle, but important temporal
changes that nonetheless do occur over time. Both approaches are presented below.

a. Methods: Non-parametric analysis

The New York City Department of Environmental Protection (NYCDEP) defines precipitation
events in association with discrete combined sewer overflows (CSOs). For the non-parametric
trends analysis, discrete rain events were identified based on a four-hour inter-event dry
period, following Restrepo-Posada and Eagleson (1982) and Yu et al. (2018). Once identified,
the following attributes were assigned for each discrete event:

● Start Time
● End Time
● Peak Intensity: Maximum hourly accumulation observed between the discrete event

start and end times, expressed as mm/hr. intensity
● Total Precipitation: Total event precipitation (mm)
● Duration: Duration of precipitation event (hr.)
● Average Intensity: Average intensity of precipitation event (mm/hr.) (Average Intensity

= Total Precipitation/Duration)
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Five different extreme precipitation events metrics were developed for this analysis. Two of the
metrics were used to investigate the frequency of particular extreme event characteristics and
the remainder were used to evaluate how extreme the events actually were. These metrics are
listed below:

● NE95 = Number of exceedances of long-term (e.g. 1955-2022) 95th percentile value
● NE99= Number of exceedances of long-term 99th percentile value
● All Values = a precipitation event set including all the values of the event attribute from

1955 to 2022
● VE95 = a precipitation event set including the events that exceed the long-term 95th

percentile values for a particular event attribute
● VE99 = a precipitation event set including the events that exceed the long-term 99th

percentile values for a particular event attribute

The non-parametric Mann-Kendall test was used to test for monotonic trends in each metric
over the entire period of study. Trends analysis was also performed on the number of annual
events (NAA) and annual accumulated precipitation (AAP) at each gauge location.

b. Results: Non-parametric analysis

1.1 Event characteristics

Figure 3.14 includes box plots presenting the four event characteristics for each gauge, with
horizontal orange lines depicting the long term 95th percentile values, and horizontal red lines
depicting the long term 99th percentile values.

Albany’s long-term 95th and 99th percentile values for all attributes are lower than those of
the NYC metro gauges. Of the NYC gauges, Central Park has slightly higher values than the
other three. The gauges with the greatest outlier values vary by event attribute.

Attribute Events and their Long-term 95th and 99th Percentiles
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Peak Intensity
(mm/hr.)

Total
Precipitation

(mm)
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Precipitation
Duration (hr.)

Average
Intensity
(mm/hr.)

Figure 3.14: Box plots depicting events and their 95th and 99th percentiles.

1.2 Mann Kendall test results

Tables 3.5-3.9 depict the results of the Mann-Kendall test. In the tables, strongly significant
results (P<0.05) are indicated by one asterisk and colored dark green/red for
increasing/decreasing trends, respectively. Marginally significant results (0.05<p<0.1) are
shown using two asterisks and colored light green/light red for increasing/decreasing trends,
respectively.

Annual cumulative precipitation has been increasing throughout the region. The frequency of
precipitation events has not been statistically changing at the NYC metro area gauges but has
increased significantly in Albany and Bridgeport.
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The frequency of events with >95th percentile peak and average intensities have increased
significantly at all of the NYC gauges. At Newark Airport, the frequency of events with >99th
percentile peak and average intensities also increased. Events with average intensities above
the 99th percentile also increased at Central Park.

Statistically significant increases in the frequency of events with >95th percentile total
accumulations are observed at Newark Airport and Central Park, but not at LaGuardia Airport.
None of the NYC metro area gauges showed changes in the frequency of events with >99th
percentile total accumulations.

Considering all events, peak and average intensities are going up throughout the NYC metro
area. Event totals have increased at Newark and LaGuardia airports, but not in Central Park.
Event durations have decreased in Central Park and LaGuardia, but not at Newark.

Considering only the events that exceed the 95th and 99th percentiles, the Mann Kendall test
does not indicate that events are getting larger, more intense, or are changing significantly in
duration.

Table 3.5: Trends in Annual Number of Precipitation Events

NAA AA\

KBDR * *

KEWR *

KNYC *

KLGA **

KALB * *

Table 3.6: Trends in Event Peak Intensity.

Peak Intensity (mm/hr.)

NE95 NE99 All Values VE95 VE99

KBDR *

KEWR * * *
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KNYC * *

KLGA * *

KALB * * *

Table 3.7: Trends in Total Precipitation Attribute.

Total Precipitation (mm)

NE95 NE99 All Values VE95 VE99

KBDR *

KEWR * *

KNYC **

KLGA *

KALB * * *

Table 3.8: Trends in Precipitation Duration Attribute.

Precipitation Duration (hr.)

NE95 NE99 All Values VE95 VE99

KBDR *

KEWR

KNYC **

KLGA *

KALB

Table 3.9: Trends in Average Intensity Attribute.
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Average Intensity (mm/hr.)

NE95 NE99 All Values VE95 VE99

KBDR **

KEWR * * *

KNYC * * *

KLGA * *

KALB * * * **

c. Methods: Parametric analysis

The parametric data analyses were based on partial duration series, the n largest rainfall
amounts for a given duration (e.g. one-hr., 24-hours, etc.) in an n-year period. More than one
partial duration series member can occur in the same year, provided they are separated by a
sufficient time period (typically 14 days) to assure independence. For each station, an array of
partial duration series (PDS) was generated such that the shortest PDS included data from
1950-1990 and the longest was based on data from 1950 through the most recent complete
year. Additionally, we created fixed-length PDS, such that each PDS contained 50 years’ worth
of data, starting with 1950-1990, then 1951-1991, etc. For each PDS in the array, rainfall
amounts corresponding to recurrence probabilities of 50%, 20%, 10%, 4%, 2% and 1% (i.e.
2-, 5-, 10- 25-, 50- and 100-year storms) were computed by simulating the methodology used
in NOAA Atlas 14 (Bonnin et al., 2006; Perica et al., 2019). Finally, each PDS was split into an
early and late period such that each year contained 46 years of data (early; 1950-1986, late;
1987-2022).

Regional L-moments were used to compute recurrence probabilities from the pds. A maximum
of 20 neighboring stations was identified and formed a region around each long-term station.
Neighboring stations were required to have at least 20 years of data in the 1950-present
period. Sample moments were obtained for each regional station using the python lmoments4

package (https://pypi.org/project/lmoments/) samlmu routine and a weighted average of the
higher order moments computed based on the length of each station’s PDS. These weighted
averages along with the base station’s location parameter were then used to obtain GEV

4 In Python, lmoments refers to a statistical package used for computing L-moments, which are
statistical quantities used for estimating parameters of probability distributions, particularly in
hydrology, climatology, and other fields dealing with environmental data.
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parameters and quantiles using the pelgev routine from the lmoments package. Other
theoretical extreme value distributions exist, but the GEV has been used extensively in prior
extreme rainfall analyses (e.g. Papalexiou and Koutsoyiannis, 2013). Given the L-moments
estimates for the GEV parameters, the lmoments library method was used to obtain the
specified quantiles of the GEV distribution.

The same analysis was performed on the CORDEX models, but note that due to the resolution,
Central Park and LaGuardia are on the same grid, so there were only four stations analyzed
with the CORDEX data; Central Park, JFK, Newark, and Bridgeport, CT.

d. Results: Parametric analysis

1. Observations

All stations in the study region show increasing precipitation amounts across most return
periods and hourly durations (Figure 3.15; see Technical Supplement for additional figures).
Figures showing results from the Central Park stations are provided as an example in this
report, with additional station figures in the supplemental material. Across all stations, the
1950-2022 POR precipitation amount is higher than the 1950-1990 POR across most return
periods (Figure 3.15; see Technical Supplement)). For example, the two-year return period
hourly precipitation amount is roughly 5% larger for the 1950-2022 POR compared to the
1950-1990 POR (Figure 3.15).

Across the studied stations, there is a consistent pattern of increasing percent change for
higher return periods. As shown in the Technical Supplement and for all hourly durations, the
percent change for the 100-yr. return period is higher than the percent change for the 50-yr.
return period, which is in turn higher than the percent change for the 25-yr. return period, etc.
The lines for the different return periods rarely cross through time.

We also see a general decrease in percent change with precipitation duration (e.g. one-hour vs.
24 hour) across the stations and return periods. In Figure 3.15A, which shows the percent
change in return periods for one-hour precipitation events for Central Park, the percent change
between the 100-year return period for 1950-2022 and 1950-1990 is over 20% (pink line).
Now, looking at the percent change in the 100-yr return period for the three-hour event (Figure
3.15C, pink line), the value drops to about 13%. And by the 24-hour duration (Figure 3.15F)
the percent change is down to about 7%. The other stations show a similar, though less
pronounced pattern, which is summarized in the Technical Supplement.
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It should be noted in Figure 3.15 that the pattern of change in return period rainfall amounts
computed for the increasing pds records from 1950-1990 through 1950-2022 is not smooth,
but rather shows several distinct jumps. These jumps are associated with the occurrence of
rainfall events that are among the highest in the pds. For example, the return periods at
Central Park jump in 2021 following the occurrence of Hurricane Ida, which was associated
with the highest rainfall total in the one-hour pds. The time series are also characterized by
periods of slow decline in the recurrence interval rainfall amounts (e.g. between 2010 and
2020 in Figure 3.15). During these periods, the new rainfall amounts added to the pds are
among the smallest, and given the increase in the number of years included in the pds,
recurrence probabilities decline slightly. Despite this, from 1990-2022, predominantly larger
rainfall events are included in the pds leading to a net increase in extreme rainfall intensities, at
all New York City stations. A histogram comparing three PORs 1950-1990, 1950-2010, and
1950-2022 is shown in Figure 3.17 for Central Park. Across all hourly durations, the most
extreme precipitation amounts tend to occur in the later 1950-2022 time series.

Hourly recurrence interval precipitation amounts have generally increased more than daily
value at Central Park when comparing the 1950-1985 and 1986-2022 periods in the
observational record (Figure 3.17, see Technical Supplement for additional figures), but this is
not reflected across the larger region and it is not reflected in modeled data (Technical
Supplement). The increase seen here, but not seen regionally, is therefore likely an artifact of
Hurricane Ida in 2021. Additionally, we’ve found the percentage of the 24-hour total that falls
during one-hour is increasing in more recent years compared to the earlier part of the record
(Figure 3.18). This finding is statistically significant at Central Park and marginally significant at
the other New York City stations. It is not clear what is responsible for this change. The large
one-hour percentages seem to occur for both tropical and non-tropical weather systems.
Additionally, we find the percentage of one-hr. pds members that correspond to storms also
included in the 24-hour duration pds has not changed over time. Approximately 23% of the
24-hour pds members include one-hour pds members.
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Figure 3.15: Percent change in hourly recurrence interval precipitation amounts relative to the
1990 POR (1950-1990) for PORs with sequentially more years included (1950-1990,
1950-1991, etc.) for 1-, 2-, 3-, 6-, 12-, and 24-hour precipitation (Panels A-F). The 2-, 5-, 10-,
20-, 25-, 50-, and 100-year storm values are plotted in the colored lines.
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Figure 3.16: Return period (x-axis) for 1-, 2-, 3-, 6-, 12-, and 24-hour precipitation amounts
(Panels A-F) based on two time periods. 1950-1986 (blue solid line) represents the early
period while 1987-2022 (orange solid line) represents the late period. The blue dashed line is
the 90% confidence interval for the 1987-2022 period of record.
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Figure 3.17: Histogram of hourly precipitation total from Central Park pds, comparing different
hourly precipitation durations (panels A-F) for three subsets of years; 1950-1990 (blue),
1950-2010 (orange), and 1950-2022 (black).
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Figure 3.18: Scatterplot of the percentage of each 24-hr precipitation total that occurs during
the one-hr. period with the largest precipitation occurrence for the 73 pds members in the
1950-2022 period of record.
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3.8 Future IDF Curve Projections

a. Methods

Future intensity duration frequency (IDF) curves were generated using downscaled climate
model data from the Localized Constructed Analogs version 1 (LOCA1) (Pierce et al., 2014) and
version 2 (LOCA2) (Pierce et al., 2023) datasets. LOCA2 uses statistical downscaling
techniques on coarse resolution (~250km) global climate model (GCM) output from the
Coupled Model Intercomparison Project Phase 6 (CMIP6) to create high resolution (6km)
future projections of temperature and precipitation. LOCA downscaling takes coarse resolution
GCM data and a high-resolution observational data set from which to train on and uses a
matching scheme to find corresponding analog days between the two to create the
high-resolution, downscaled data (Pierce et al., 2023).

The two main differences between LOCA1 and LOCA2 are the input GCM data and the
precipitation training data. LOCA1 downscaled CMIP5 whereas LOCA2 downscaled the
aforementioned CMIP6. LOCA1 used an observational dataset from Livneh et al. (2015).
However, additional analyses on this dataset discovered a bias in the strength of daily rain
extremes which resulted in unrealistically weak values (Pierce et al., 2023). LOCA2 uses Pierce
et al. (2021), which is believed to correct the bias seen in Livneh et al. (2015) and better
represent daily rain extremes (Pierce et al., 2023). At the time of this research, 31 downscaled
CMIP5 models and 21 downscaled CMIP6 models had available precipitation data for this
study. Those models and their affiliations are broken down in Table S3.6.1 (CMIP5) and Table
S3.6.2 (CMIP6) in the supplementary information.

Overall, a total of six GCM experiments were analyzed for this study. For CMIP5, the historical
period covers 1950-2005. Its future climates are based on the representative concentration
pathways (RCP) scenarios that represent medium-low emissions (RCP4.5) and high emissions
(RCP8.5) future climates. For CMIP6, the historical period covers 1950-2014, and its two
future scenarios (2015-2099) under the shared socio-economic pathways (SSP) that represent
low emission (SSP245) and high emission (SSP585) future climates.

Additionally, our analysis was focused on four stations in the New York City area: Central Park,
LaGuardia Airport, John F. Kennedy Airport, and Newark Airport. Future change factors were
computed relative to observational data from Atlas 14 (Bonnin et al., 2006). The National
Oceanic and Atmospheric Administration (NOAA) Atlas 14 dataset consists of subhourly,
hourly, and daily precipitation frequency estimates over the United States (Perica et al., 2013).
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The precipitation data are obtained from a network of over 8,700 precipitation gauges which
are operated by state agencies and the National Weather Service. Statistical techniques are
employed to estimate the frequency of precipitation events of varying intensities. The period of
record (POR) for the Central Park station spans 1869 to present, while the POR for the
LaGuardia and JFK stations span 1948 to present, and the Newark station spans
1931-present.

Future IDF curves were developed from change factors based on the following steps:

1. Obtain partial duration series (PDS) of the n largest independent daily precipitation
events for each of the four stations, downscaling methods, GCMs, and emissions
scenarios.

2. Compute recurrence interval precipitation amounts by fitting the generalized extreme
value (GEV) distribution to each pds as was done for the parametric historical analysis.

3. Compute change factors for each station and emissions scenario based on the fit
recurrence interval rainfall amounts.

4. Create future IDF curves based on the change factor and Atlas 14 data for each station
and emissions scenario using the mean and 75th, 83rd, and 90th percentiles of the
ensemble of models.

Step 1 – Partial Duration Series

Extreme rainfall events were extracted separately from each downscaled model and are
based on the partial duration series (PDS) (Madsen et al., 1997) of the dataset. Using PDS, the
n largest independent precipitation events are extracted, where n represents the number of
available years of record. PDS are used as the basis of this work, given this method’s
widespread application (e.g. Cook et al., 2017; DeGaetano and Castellano 2017; Lopez‐Cantu
et al., 2020; Ragno et al., 2018; Thakali et al., 2016; Wu et al., 2019) and to ensure the
inclusion of all relevant extreme rainfall events projected in the downscaled climate
simulations. PDS were created for both emissions scenarios and the historical period for each
model from LOCA1/LOCA2.

For each PDS, rainfall amounts corresponding to recurrence probabilities of 50%, 20%,
10%, 4%, 2% and 1% (i.e. 2-, 5-, 10- 25-, 50- and 100-year storms) were computed by
simulating the methodology used in NOAA Atlas 14 (Bonnin et al., 2006; Perica et al., 2019).
First, the python lmoments package (https://pypi.org/project/lmoments/) was used to fit the
generalized extreme value (GEV) distribution to each grid point’s PDS using the methods of
Hosking (1990). Although not the only valid theoretical distribution for estimating extreme
rainfall probabilities, the use of the GEV has been standard practice in prior extreme rainfall
analyses (e.g. Papalexiou and Koutsoyiannis, 2013). Given the L-moments estimates for the
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GEV parameters, the lmoments library quagev method was used to obtain the specified
quantiles of the GEV distribution.

Step 2 – Change Factors

After the 24-hour rainfall depths were calculated for each of the return periods, the
research team used these values to calculate IDF curve change factors. Change factors
represent the change signal between the historic and future period in climate projections.
Change factors are calculated based on the quantile delta method (QDM), in which changes
between historic and future values are estimated separately by quantiles: discrete segments
within a probability distribution (Cannon et al., 2015; Switzman et al., 2017). IDF curves are
already calculated based on recurrence probabilities of 50 percent, 20 percent, 10 percent, 4
percent, 2 percent, and 1 percent, so the QDM or change factors are therefore a ratio of the
future time-period 24-hour rainfall depth for a given recurrence interval to the historic
modeled 24-hour rainfall depth for the same recurrence interval. Equation 1 shows the change
factor calculation for a two-year rainfall event for the 2015-2099 high emissions future
time-period.

The change factor calculation was carried out for each recurrence interval, each station, each
downscaled climate model dataset (LOCA1 and LOCA2), each GCM, and each emissions
scenario. Ultimately, change factors representing the ensemble mean (mean across all models)
and the 75th, 83rd, and 90th percentiles of the ensemble were retained.

For each grid-model-RCP/SSP combination, an ensemble of 1,000 simulations was also
constructed via a resampling procedure. From the GEV distribution fit to the original
downscaled future period PDS, 1,000 50-member PDS were randomly selected using the scipy
genextremer vs function. A new GEV distribution was fit to each random PDS, retaining the
original regional average of the higher order moments, and the resulting 2-, 5-, 10-, 25-, 50-
and 100-year recurrence interval precipitation amounts used to compute 1000 random change
factors. Ultimately, change factors representing the ensemble mean (mean across all models
and resampled pds) and the 75th, 83rd, and 90th percentiles of this ensemble were retained.

Step 3 – IDF Curves
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Because change factors are essentially a scalar between the historic period and the future
period of interest, with the same baseline period as Atlas 14 and the underlying data derived in
the same way as Atlas 14, they can be directly multiplied by the Atlas 14 values for the
respective recurrence interval to obtain the climate adjusted future IDF curves for each station.
This method was used to create IDF curves for each station, from each downscaled climate
model dataset, for each GCM within the datasets and for both RCP4.5 and RCP8.5 from the
LOCA1 dataset and SSP245 and SSP585 from the LOCA2 dataset.

b. Results

CMIP5 vs. CMIP6 Change Factors

Across the four stations (Central Park, JFK Airport, LaGuardia Airport, and Newark Airport), the
change factors seen in CMIP6 tend to be larger than those in CMIP5 in both the lower and high
emissions scenarios (Figure 3.19, see Technical Supplement for additional figures). Again,
results for Central Park are displayed here with additional stations in the supplemental
information. This is particularly evident at the longer return periods. For Central Park, the
CMIP6 change factors are marginally lower than CMIP5 for the two-yr. return period, but by the
five-yr. return period, the CMIP6 values exceed beyond the CMIP5 50% confidence intervals
and remain high, with an exception for the 50-yr. return period (Figure 3.19A-B). For both JFK
and LaGuardia Airports, CMIP6 change factors exceed CMIP5 change factors across all return
periods, and sit outside the CMIP5 50% confidence interval for about half of the return periods
(see figures in Technical Supplement). While Newark’s CMIP6 two-yr. return period change
factor is lower than CMIP5, like Central Park, CMIP6 then exceeds CMIP5 for the remaining
returning periods. However, Newark is the only station where all CMIP6 change factors are
within the 50% confidence interval of CMIP5 (Technical Supplement). Tables with all
calculated change factors, along with the 10th, 17th, 25th, 75th, 83rd, and 90th percentiles
are available in the supplemental information.
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Figure 3.19: LOCA and LOCA2 change factors for Central Park. Panels A and B show the
ensemble mean change factors for CMIP5 emissions scenario RCP4.5 (lower emissions) (solid
blue line) and the 17th and 83rd percentiles (dashed blue lines) for an early future period
(2020-2069) and a late future period (2050-2099). CMIP6 change factors for emissions
scenario SSP245 are plotted in the solid orange line. Panels C and D plot the same values but
for the higher emissions scenarios, RCP8.5 (CMIP5) and SSP585 (CMIP6).

IDF Curves
The projected intensity-duration-frequency curves reflect the increase in change

factors from LOCA1 to LOCA2. IDF curves for the two-yr. and 100-yr. return period and
emissions scenarios (RCP4.5/SSP245 and RCP8.5/SSP585) for Central Park are plotted in
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Figures 3.20 and 3.21. Figures for the additional stations and return periods are in the
supplemental material. The IDF curves are rain depth (in inches) versus the duration (in hours).
While the IDF curves for LOCA2 are greater than LOCA across all scenarios and return periods
for all stations, the LOCA1 curves do fall within the 50% confidence interval for LOCA2. For all
stations, the LOCA1 and LOCA2 curves for the two-yr. return period are essentially the same
(Figure 3.20). The separation between LOCA1 and LOCA2 occurs starting with the five-yr.
return period.

Figure 3.20: IDF curves for the Central Park station, comparing observations from Atlas 14
(black solid line), and LOCA2 early (2020-2069, orange solid lines), and LOCA2 late
(2050-2099, blue solid lines). The 17th and 83rd percentiles are plotted on the dotted lines.
The results for future emissions scenarios SSP245 and SSP585 are plotted in panel A and B,
respectively.
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Figure 3.21: As in Figure 3.20 but for the 100-yr. return period.

Summarized Change Factors

Spatial variations in change factors between grid points associated with specific stations are
likely an artifact of the downscaling process, especially in coastal areas like New York City,
where grid points in the global models reflect different coastal borders and land water
contrasts. Although the statistical resampling helps to smooth some of these variations, a
regional average of the points representing the New York City stations is a more robust
measure of the change in extreme rainfall over the City. These citywide average change factors
are shown for high ssp585 and lower ssp245 emissions scenarios in Tables 3.10 and 3.11. In
practical application, the values listed in these tables provide the necessary adjustment to
convert values obtained from Atlas 14 to values that reflect the climate conditions of the
2020-2069 and 2050-2099 time periods. As such, they provide the basis for the hydrologic
and hydraulic modeling analyses conducted under Subtask 3.7.
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Table 3.10: Citywide average change factors for early (2020-2069) and late (2050-2099) time
periods under high ssp585 emissions.
SSP585
EARLY: 2020-2069

PERCENTILE 2-yr 5-yr 10-yr 25-yr 50-yr 100-yr

10th 1.04 1.00 0.93 0.82 0.79 0.84

25th 1.11 1.08 1.09 1.02 1.06 0.98

Mean 1.18 1.21 1.23 1.18 1.21 1.23

75th 1.24 1.27 1.39 1.34 1.42 1.44

83rd 1.27 1.35 1.42 1.40 1.46 1.53

90th 1.35 1.46 1.45 1.43 1.52 1.64

SSP585
LATE: 2050-2099

PERCENTILE 2-yr 5-yr 10-yr 25-yr 50-yr 100-yr

10th 1.15 1.09 1.07 1.01 0.97 0.93

25th 1.18 1.17 1.16 1.09 1.07 1.05

Mean 1.28 1.32 1.35 1.32 1.30 1.30

75th 1.39 1.46 1.59 1.53 1.47 1.56

83rd 1.41 1.55 1.61 1.58 1.59 1.63

90th 1.45 1.59 1.64 1.67 1.68 1.75

Table 3.11: City-wide average change factors for early (2020-2069) and late (2050-2099)
time periods under a lower ssp245 emissions scenario.
SSP245
EARLY: 2020-2069

PERCENTILE 2-yr 5-yr 10-yr 25-yr 50-yr 100-yr
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10th 1.04 1.02 0.97 0.85 0.84 0.84

25th 1.09 1.07 1.08 1.02 0.94 0.95

Mean 1.16 1.20 1.19 1.16 1.14 1.17

75th 1.20 1.27 1.25 1.27 1.29 1.29

83rd 1.26 1.35 1.34 1.37 1.35 1.39

90th 1.32 1.44 1.44 1.46 1.44 1.58

SSP245
LATE: 2050-2099

PERCENTILE 2-yr 5-yr 10-yr 25-yr 50-yr 100-yr

10th 1.08 1.08 1.04 0.91 0.88 0.87

25th 1.14 1.14 1.14 1.06 1.03 1.05

Mean 1.22 1.28 1.28 1.23 1.24 1.26

75th 1.28 1.40 1.37 1.35 1.36 1.40

83rd 1.31 1.44 1.51 1.45 1.43 1.52

90th 1.34 1.47 1.61 1.58 1.56 1.64

3.9 Hydrologic and Hydraulic Modeling to Evaluate Implications of Design
Hyetograph Assumptions and Future IDF Curves on Pluvial Flooding in New York
City

Hydrologic and Hydraulic (H&H) modeling was conducted in support of two objectives:

1. Evaluate the impact that hyetograph assumptions have on flooding for present-day
rainfall: To simulate a rainfall event in a dynamic H&H model, a rainfall hyetograph is
required that distributes the total rainfall depth specified from the IDF curve over the
specified duration. There are many hyetograph shapes that can be used and appropriate
choice of a hyetograph (or multiple) is an important consideration for any H&H modeling
application (research, planning, design, funding, etc.).

2. Evaluate changes in flooding as a result of increasing rainfall with climate change: The
primary objective of the H&H modeling was to assess how increased precipitation from
climate change (see Subtask 6) may impact flooding. Selection of a hyetograph was an
input to this assessment.
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a. Methods

Evaluate the impact that hyetograph assumptions have on flooding for
present-day rainfall

To assess pluvial-driven sewer-system flooding in New York City, models developed by the NYC
Department of Environmental Protection (NYC DEP) as part of the Citywide Stormwater
Engineering Analysis and Planning Region 2 (CSEAP-2) project were utilized. These models are
1-D models developed using Innovyze InfoWorks Integrated Catchment Model (ICM) software.
They represent all sewers above 30 inches in diameter, and include higher-resolution (i.e.
sewers less than 30”) in lower-lying areas.

The CSEAP-2 models were calibrated to in-sewer flow monitoring data following the Chartered
Institution of Water and Environmental Management (CIWEM) calibration standards for
in-sewer peak flows, total volume, and peak depths. The flow monitoring period ranged from
two-four months depending on flow meter location. The rainfall events captured range from
less than one-year return periods to 46-year return periods, including significant rainfall events
such as the predecessor rain event associated with Tropical Storm and Henri and Post Tropical
Cyclone Ida.
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Figure 3.22: Study areas for H&H modeling.

CSEAP-2 model simulations were conducted for two study drainage areas: the Jamaica Water
Resources Recovery Facility (WRRF) Drainage Area and the Rockaway WRRF Drainage Area
(Figure 3.22). The DEP Bureau of Water and Sewer Operations (BWSO) 24-hr. Symmetric
Hyetograph, which was developed by the BWSO to design new city sewers, was selected as the
baseline hyetograph for the precipitation analyses per discussion with Interagency
Collaborators members (BWSO, 2023). This hyetograph is composed of six-minutes of uniform
intensity rainfall centered at the halfway point and of two gradually changing tails of
lower-intensity precipitation that the area under the curve (rainfall depth) for any duration
event matches the TP-25 IDF Curve (U.S. Weather Bureau, 1955) (U.S. Department of
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Commerce, 1955). Figure 3.23, below depicts the hyetograph for the 10-yr. and 100-yr.
present-day events.

Figure 3.23: Hyetograph for the 10-yr and 100-yr present-day events.

Based on discussions with Interagency Collaborators members and the SSC (see Subtask 3.2),
two additional design hyetographs commonly-used in the NYC-area were chosen for
comparison with the DEP BWSO Symmetric Hyetograph:

● The NOAA Atlas 14 hyetograph: Atlas 14 hyetograph shapes are commonly used in
engineering practice to distribute a total rainfall depth over a target storm duration.
Atlas 14 Volume 10, Northeastern Region 2 (Coastal) covers the NYC area and was used
for the hyetographs in this analysis. Four quartile distributions are available to choose
from, and within each quartile, the 10% to 90% occurrence probabilities are provided,
in 10% increments. Atlas 14 suggests that the choice of quartile and
percent-occurrence should be based on model application and/or comparison to
historic storms. The team found no recommended standards specific to NYC for
choosing a specific shape (see Subtask 3.1). For the purposes of this study, all four
quartiles were assessed, using both the 50% and 90% occurrence probabilities.

● The Soil Conservation Service (SCS) Dimensionless Unit Hydrograph, Type III
distribution: Type III aligns with the NYC region per TR-55).
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All hyetographs were assumed to be 24 hours in duration to allow for comparison with the
BWSO 24-hour Symmetric Hyetograph. The total rainfall depth represented by the Atlas 14
and SCS hyetographs is that associated with a 10-yr., 24-hr. storm for Central Park.

Table 3.22: NOAA Atlas 14 quartiles for 50% and 90% temporal distributions for the 10-year,
24-hour storm.

Figure 3.24: NOAA Atlas 14 quartiles for 50% and 90% temporal distributions for the 10-year,
24-hour storm.

Table 3.13: Parameters of commonly used hyetographs and simulated in the H&H models.
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Figure 3.25: Shape of hyetographs simulated in the H&H models.

Evaluate changes in flooding as a result of increasing rainfall with climate change

The BWSO Symmetric Hyetograph present-day 10-yr. and 100-yr. return periods were chosen
as the baseline hyetographs for this assessment per discussion with Interagency Collaborators
members. Increased precipitation with climate change was represented using the change
factors developed through Subtask 3.6.

Table 3.14: Climate scenarios and change factors used to represent increased precipitation in
H&H modeling analyses.
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Table 3.15: Projected 24-hour rainfall totals after applying each change factor. Change factors
were applied consistently to each timestep.
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Figure 3.26: The six hyetographs used in H&H modeling climate change analysis. These
hyetographs are all based on the BWSO 24-hour Symmetric Hyetograph.

b. Results

Evaluate the impact that hyetograph assumptions have on flooding for
present-day rainfall

H&H modeling (detailed in the Methods section) comparing NOAA Atlas 14 hyetographs using
different probabilities and quartile distributions show that, if using the 50% occurrence
probabilities, the relative impact of choosing different quartile distributions on flooding is
minimal. However, if using the 90% occurrence probability, the impact of quartile distribution is
more significant. Under this 90% occurrence probability, Quartile 4 results in significantly more
flooding. These observations are relatively consistent across the two drainage areas studied.

Table 3.16: Modeled flooding results comparing quartile distributions and occurrence
probabilities of NOAA Atlas 14 hyetographs.

Modeling comparing three different types of hyetographs indicates that the SCS type
hyetograph produces similar results to the BWSO Symmetric Hyetograph and that the two
chosen Atlas 14 shapes produce significantly less flooding. Similar to the prior analysis, trends
are relatively consistent across both neighborhoods.

Table 3.17: Comparison of modeled flooding results for three types of hyetographs.
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Evaluate changes in flooding as a result of increasing rainfall with climate change

H&H modeling results indicate increases in flooded locations due to climate change
(represented by SSP2545 and SSP585) are smaller than increases in flooded volume. Trends
are generally consistent across both study areas, although the Jamaica drainage area had a
greater impact in the number of flooded nodes due to climate change than the Rockaway
drainage area. Compared to the present-day conditions, this impact in the number of flooded
nodes is greater for the 10-yr. storm than the 100-yr. storm, likely due to the 10-yr. storm being
closer to the target design level-of-service of sewers (typically three-five-yr. return period in
New York City).

Table 3.18: Modeled flooding results for 6 precipitation scenarios

When comparing these results with those of the prior two analyses, results indicate the choice
of an Atlas 14 design hyetograph shape vs. a BWSO or SCS-type shape can have impacts on
flooding in the same order-of-magnitude as those due to anticipated increases in rainfall from
to climate change.

The results also show increases in flood volume exceed increases in precipitation (Figure
3.27). This is likely due to the fact that a large portion of the baseline precipitation is handled
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by existing drainage infrastructure (closer to design level-of-service), but all additional rainfall
is above the capacity of the existing system.

Figure 3.27:Modeled percent change in runoff, rainfall and flooding.

c. Recommendations

Results indicated the shape of rainfall distribution (the hyetograph) has a significant impact on
flooding, but the research team was unable to identify any overarching policy or standard in
New York City that specifies use of specific hyetographs for the broad range of ongoing and
future research, planning, and engineering initiatives. Although several design hyetograph
shapes were assessed in this study, future research is recommended to develop a broad policy
or standard that will guide practitioners in New York City on which type of design event
hyetograph (or combination of multiple events and/or use of historic storms) to use for each
application. This guidance should consider the project goals (risk assessment, master
planning, funding application, infrastructure design, etc.), project budget (assessing more
events increases project engineering costs), and level-of-service goals, if applicable. In
addition to hyetograph shape, the guidance should also identify the event duration and return
period, or combinations, that should be assessed. Future research can incorporate assessment
of the rainfall distribution during historic events in New York City to help inform this policy.

We were unable to identify any standardized practices for downscaling typical 24-hour design
events to durations less than or equal to one hour in duration. The team considered using Atlas
14’s shortest-provided rainfall distribution (the six-hour event) and downscaling it
proportionally to a one-hour and/or 30-minute event but was unable to identify a scientific
recommendation that supported this approach. To advance future assessment in New York City
of short-duration cloudburst type rainfall events, as opposed to more traditional and standard
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24-hour events, additional research is recommended to develop the sub one-hour hyetographs
that can be used in policy making and engineering planning and design.

3.10 Recommendations for Future Research
1. Analysis of recently developed radar-rainfall products could help the City determine the

necessary spatial density of high temporal frequency (e.g. 1 minute) precipitation
gauging stations across the city.

2. The City should invest resources to centralize, quality control, warehouse, develop
procedures to maintain and facilitate access to precipitation data so it is available to
governmental and non-governmental stakeholders, and so policy and codes reference
the same information and can be easily updated.

3. The database should be dynamic, with key trends and figures updated as new
observations are produced, and climate projections are published.

4. The City should develop guidance for H&H modeling regarding event duration and
return period, as well as the characteristics (e.g. type, interval, temporal distribution,
duration) of design event hyetographs that are used for different types of analyses (e.g.
risk assessment, master planning, funding application, infrastructure design, etc.),
project budgets (assessing more events increases project engineering costs), and
level-of-service goals (e.g. flooding, MS4, CSO, etc.).

5. Climate model projections consistently show increases in future design storms of
15-30% through the 21st century. Such changes should be factored into storm water
design guidance.

6. Procedures should be put in place to routinely evaluate future IDF projections as new
downscaling techniques are developed and newer generations of climate models
become available.

7. Research is needed to quantify the types of weather systems responsible for different
rainfall intensities, how these weather types (e.g. hurricanes) are projected to change in
the future and how these events impact the parametric extreme value distributions
used to derive design storms.

8. The meteorological mechanisms most responsible for subdaily rainfall extremes should
also be quantified to refine the assumptions regarding similar changes in daily and sub
daily rainfall intensities.

References
Agilan, V., & Umamahesh, N. V. (2017). What are the best covariates for developing

non-stationary rainfall intensity-duration-frequency relationship? Advances in Water
Resources, 101, 11–22.

Allan, R. P., & Soden, B. J. (2008). Atmospheric warming and the amplification of precipitation
extremes. Science, 321(5895), 1481–1484.

125



Armstrong, W. H., Collins, M. J., & Snyder, N. P. (2014). Hydroclimatic flood trends in the
northeastern United States and linkages with large-scale atmospheric circulation
patterns. Hydrological Sciences Journal, 59(9), 1636–1655.
https://doi.org/10.1080/02626667.2013.862339

Bacmeister, J. T., Reed, K. A., Hannay, C., Lawrence, P., Bates, S., Truesdale, J. E., Rosenbloom,
N., & Levy, M. (2018). Projected changes in tropical cyclone activity under future
warming scenarios using a high-resolution climate model. Climatic Change, 146(3),
547–560.

Bao, J., & Sherwood, S. C. (2019). The role of convective self-aggregation in extreme
instantaneous versus daily precipitation. Journal of Advances in Modeling Earth
Systems, 11(1), 19–33.

Barbero, R., Abatzoglou, J. T., & Fowler, H. J. (2019). Contribution of large-scale midlatitude
disturbances to hourly precipitation extremes in the United States. Climate Dynamics,
52(1), 197–208.

Barlow, M. (2011). Influence of hurricane-related activity on North American extreme
precipitation: HURRICANES AND NORTH AMERICAN EXTREMES. Geophysical Research
Letters, 38(4), n/a-n/a. https://doi.org/10.1029/2010GL046258

Bonnin, G.M., Martin, D., Lin, B., et al. (2006) NOAA Atlas 14: Precipitation-frequency atlas of
the United States, volume 2, Version 3.0.

BWSO. (2023). Sewer System Design, Drainage Plan Preparation, and Analysis (DRAFT).
Bureau of Water and Sewer Operations, NYC Department of Environmental Protection.

Cannon, A.J., Sobie, S.R., and Murdock, T.Q. (2015) Bias correction of GCM precipitation by
quantile mapping: How well do methods preserve changes in quantiles and extremes,
Journal of Climate, 28(17), 6938-6959.

Chand, S. S., Walsh, K. J., Camargo, S. J., Kossin, J. P., Tory, K. J., Wehner, M. F., Chan, J. C.,
Klotzbach, P. J., Dowdy, A. J., & Bell, S. S. (2022). Declining tropical cyclone frequency
under global warming. Nature Climate Change, 12(7), 655–661.

Collins, M. J. (2009). Evidence for Changing Flood Risk in New England Since the Late 20th
Century. JAWRA Journal of the American Water Resources Association, 45(2),
279–290. https://doi.org/10.1111/j.1752-1688.2008.00277.x

Cook, L.M., Anderson, C.J., and Samaras, C. (2017) Framework for incorporating downscaled
climate output into existing engineering methods: Application to precipitation
frequency curves, Journal of Infrastructure Systems, 23(4), doi:
10.1061/(ASCE)IS.1943-555X.0000382.

DeGaetano, A. T. (2009). Time-Dependent Changes in Extreme-Precipitation Return-Period
Amounts in the Continental United States. Journal of Applied Meteorology and
Climatology, 48(10), 2086–2099. https://doi.org/10.1175/2009JAMC2179.1

126

https://doi.org/10.1029/2010GL046258
https://doi.org/10.1111/j.1752-1688.2008.00277.x
https://doi.org/10.1175/2009JAMC2179.1


DeGaetano, A. and Castellano, C.M. (2018) Selecting time series length to moderate the impact
of nonstationarity in extreme rainfall analyses, Journal of Applied Meteorology and
Climatology, 57(10).

Easterling, D. R., Arnold, J. R., Knutson, T., Kunkel, K. E., LeGrande, A. N., Leung, L. R., Vose, R.
S., Waliser, D. E., & Wehner, M. F. (2017). Ch. 7: Precipitation Change in the United
States. Climate Science Special Report: Fourth National Climate Assessment, Volume I.
U.S. Global Change Research Program. https://doi.org/10.7930/J0H993CC

Eggers, S., Thorne, S., Butte, G., & Sousa, K. (2011). A Strategic Risk Communications Process
for Outreach and Dialogue on Biosolids Land Application. WERF.

Fowler, H. J., Lenderink, G., Prein, A. F., Westra, S., Allan, R. P., Ban, N., Barbero, R., Berg, P.,
Blenkinsop, S., & Do, H. X. (2021). Anthropogenic intensification of short-duration
rainfall extremes. Nature Reviews Earth & Environment, 2(2), 107–122.

Frei, A., Kunkel, K. E., & Matonse, A. (2015). The Seasonal Nature of Extreme Hydrological
Events in the Northeastern United States. Journal of Hydrometeorology, 16(5),
2065–2085. https://doi.org/10.1175/JHM-D-14-0237.1

Georgakakos, A. (2014). Climate Change Impacts in the United States CHAPTER 3 WATER
RESOURCES. In Climate Change Impacts in the United States.

Gutmann, E. D., Rasmussen, R. M., Liu, C., Ikeda, K., Bruyere, C. L., Done, J. M., Garrè, L.,
Friis-Hansen, P., & Veldore, V. (2018). Changes in hurricanes from a 13-yr
convection-permitting pseudo–global warming simulation. Journal of Climate, 31(9),
3643–3657.

Horton, R., Bader, D., Kushnir, Y., Little, C., Blake, R., & Rosenzweig, C. (2015). New York City
Panel on Climate Change 2015 ReportChapter 1: Climate Observations and Projections:
NPCC 2015 Report Chapter 1. Annals of the New York Academy of Sciences, 1336(1),
18–35. https://doi.org/10.1111/nyas.12586

Huang, H., Winter, J. M., Osterberg, E. C., Horton, R. M., & Beckage, B. (2017). Total and
Extreme Precipitation Changes over the Northeastern United States. Journal of
Hydrometeorology, 18(6), 1783–1798. https://doi.org/10.1175/JHM-D-16-0195.1

Jackson, E., E. Richter, P.L. Gurian, A. Pradhan, E. Aktan, and F. Moon. (2012). “Knowledge
Management for Aging Infrastructures,” The 6th International Conference on Bridge
Maintenance, Safety and Management (IABMAS 2012), Lake Como, Italy, on July 8-12,
2012.

Jessup, S. M., & Colucci, S. J. (2012). Organization of Flash-Flood-Producing Precipitation in
the Northeast United States. Weather and Forecasting, 27(2), 345–361.
https://doi.org/10.1175/WAF-D-11-00026.1

Kendon, E. J., Blenkinsop, S., & Fowler, H. J. (2018). When will we detect changes in
short-duration precipitation extremes? Journal of Climate, 31(7), 2945–2964.

127

https://doi.org/10.7930/J0H993CC


Knutson, T., Camargo, S. J., Chan, J. C., Emanuel, K., Ho, C.-H., Kossin, J., Mohapatra, M., Satoh,
M., Sugi, M., & Walsh, K. (2020). Tropical cyclones and climate change assessment.
Bulletin of the American Meteorological Society, 101(3), E303–E322.

Kunkel, K. E., Easterling, T.R., Biard, J.C., Champion, S.M., Gleason, B.E., Johnson, K.M., Li, A.,
Stegall, S., Stevens, L.E., Stevens, S.E., Squires, M., Sun, L., & Yin, X. (2020).
Incorporation of the Effects of Future Anthropogenically Forced Climate Change in
Intensity-Duration-Frequency Design Values. Version 2 (RC-2517). North Carolina
Institute for Climate Studies (NCICS), North Carolina State University.
https://precipitationfrequency.ncics.org/pdfs/RC_2517_Final_Report_version2_Sep_04
_2020_clean.pdf

Laprise, R., De Elia, R., Caya, D., Biner, S., Lucas-Picher, P. H., Diaconescu, E., Leduc, M.,
Alexandru, A., & Separovic, L. (2008). Challenging some tenets of regional climate
modelling. Meteorology and Atmospheric Physics, 100(1), 3–22.

Lenderink, G., Barbero, R., Loriaux, J. M., & Fowler, H. J. (2017). Super-Clausius–Clapeyron
Scaling of Extreme Hourly Convective Precipitation and Its Relation to Large-Scale
Atmospheric Conditions. Journal of Climate, 30(15), 6037–6052.
https://doi.org/10.1175/JCLI-D-16-0808.1

Lenderink, G., de Vries, H., Fowler, H. J., Barbero, R., van Ulft, B., & van Meijgaard, E. (2021).
Scaling and responses of extreme hourly precipitation in three climate experiments
with a convection-permitting model. Philosophical Transactions of the Royal Society A,
379(2195), 20190544.

Lenderink, G., & Van Meijgaard, E. (2008). Increase in hourly precipitation extremes beyond
expectations from temperature changes. Nature Geoscience, 1(8), 511–514.

Lengfeld, K., Kirstetter, P.-E., Fowler, H. J., Yu, J., Becker, A., Flamig, Z., & Gourley, J. (2020).
Use of radar data for characterizing extreme precipitation at fine scales and short
durations. Environmental Research Letters, 15(8), 085003.

Livneh, B., Bohn, T.J., Pierce, D.W., Munoz-Arriola, F., Nijssen, B., Vose, R., Cayan, D.R., and
Brekke, L. (2015), A spatially comprehensive, hydrometeorological data set for Mexico,
the U.S., and Southern Canada 1950-2013, Scientific Data, 2(150042), doi:
10.1038/sdata.2015.42.

Lochbihler, K., Lenderink, G., & Siebesma, A. P. (2019). Response of extreme precipitating cell
structures to atmospheric warming. Journal of Geophysical Research: Atmospheres,
124(13), 6904–6918.

Lopez-Cantu, T., Prein, A. F., & Samaras, C. (2020). Uncertainties in future US extreme
precipitation from downscaled climate projections. Geophysical Research Letters,
47(9), e2019GL086797.

Madajewicz, M. (2020) Who is vulnerable and who is resilient to coastal flooding? Lessons from
Hurricane Sandy in New York City, Climate Change, 163.

128

https://doi.org/10.1038/sdata.2015.42


Madsen, H., Rasmussen, P.F., and Rosbjerg, D. (1997) Comparison of annual maximum series
and partial duration series methods for modeling extreme hydrologic events: 1. At-site
modeling, Water Resources Research, 33(4), doi: 10.1029/96WR03848.

Maimone, M., Malter, S., Rockwell, J., & Raj, V. (2019). Transforming global climate model
precipitation output for use in urban stormwater applications. Journal of Water
Resources Planning and Management, 145(6), 04019021.

Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D.
P., & Stouffer, R. J. (2008). Stationarity Is Dead: Whither Water Management? Earth, 4,
20.

Moseley, C., Hohenegger, C., Berg, P., & Haerter, J. O. (2016). Intensification of convective
extremes driven by cloud–cloud interaction. Nature Geoscience, 9(10), 748–752.

Najibi, N., Mukhopadhyay, S., & Steinschneider, S. (2022). Precipitation Scaling With
Temperature in the Northeast US: Variations by Weather Regime, Season, and
Precipitation Intensity. Geophysical Research Letters, 49(8), e2021GL097100.

NCEI (2023a). Storm Events Database. National Centers for Environmental Information,
https://www.ncdc.noaa.gov/stormevents/, Accessed June 2023.

NCEI (2023b). Local Climatological Dataset. National Centers for Environmental Information
(NCEI), NESDIS, NOAA, U.S. Department of Commerce. 2023.

NCEI (2022). Data Documentation for Data Set 6405 (DSI-6405). ASOS Surface 1-MINUTE,
Page 1 Data. National Centers for Environmental Information (NCEI).
https://www.ncei.noaa.gov/data/automated-surface-observing-system-one-minute-pg
1/doc/asos-1min-pg1_documentation.pdf
NOAA (2003), Data Documentation for Data Set 3240 (DSI-3240), Hourly Precipitation
Data. National Climatic Data Center, Ashville, NC 28801-5001, USA.
https://www.ncei.noaa.gov/pub/data/hourly_precip-3240/dsi3240.pdf

NWS (2016). Storm Data Preparation, 10–1605 National Weather Service Instruction (2016).
U.S. National Weather Service,
http://www.nws.noaa.gov/directives/sym/pd01016005curr.pdf

NYC DEP. (2013). Wastewater Resiliency Plan Climate Risk Assessment and Adaptation Study
[J]. New York City Department of Environmental Protection.

Papalexiou, S. M., and Koutsoyiannis, D. (2013) Battle of extreme value distributions: A global
survey on extreme daily rainfall, Water Resources Research, 49(1),
https://doi.org/10.1029/2012WR012557.

Parodi, A., & Emanuel, K. (2009). A Theory for Buoyancy and Velocity Scales in Deep Moist
Convection. Journal of the Atmospheric Sciences, 66(11), 3449–3463.
https://doi.org/10.1175/2009JAS3103.1

Pendergrass, A. G. (2020). Changing degree of convective organization as a mechanism for
dynamic changes in extreme precipitation. Current Climate Change Reports, 6(2),
47–54.

129

https://doi.org/10.1029/96WR03848
https://www.ncei.noaa.gov/data/automated-surface-observing-system-one-minute-pg1/doc/asos-1min-pg1_documentation.pdf
https://www.ncei.noaa.gov/data/automated-surface-observing-system-one-minute-pg1/doc/asos-1min-pg1_documentation.pdf
https://doi.org/10.1029/2012WR012557


Pérez Bello, A., Mailhot, A., & Paquin, D. (2021). The Response of Daily and Sub-Daily Extreme
Precipitations to Changes in Surface and Dew-Point Temperatures. Journal of
Geophysical Research: Atmospheres, 126(16), e2021JD034972.

Perica, S., Martin, D., Pavlovic, S., Roy, I., St. Laurent, M., Trypaluk, C., Unruh, D., Yekta, M., and
Bonnin, G.M. (2013) Precipitation-frequency atlas of the United States, southeastern
states, Atlas 14, volume 9.

Perica, S., Pavlovic, S., Laurent, M. S., Trypaluk, C., Unruh, D., Martin, D., & Wilhite, O. (2019).
NOAA Atlas 14: Precipitation Frequency Atlas of the United States Volume 10 Version
3.0: Northeastern States. National Weather Service.
https://www.weather.gov/media/owp/oh/hdsc/docs/Atlas14_Volume10.pdf

Peterson, T. C., Heim, R. R., Hirsch, R., Kaiser, D. P., Brooks, H., Diffenbaugh, N. S., Dole, R. M.,
Giovannettone, J. P., Guirguis, K., Karl, T. R., Katz, R. W., Kunkel, K., Lettenmaier, D.,
McCabe, G. J., Paciorek, C. J., Ryberg, K. R., Schubert, S., Silva, V. B. S., Stewart, B. C., …
Wuebbles, D. (2013). Monitoring and Understanding Changes in Heat Waves, Cold
Waves, Floods, and Droughts in the United States: State of Knowledge. Bulletin of the
American Meteorological Society, 94(6), 821–834.
https://doi.org/10.1175/BAMS-D-12-00066.1

Pierce, D. W., Cayan, D. R., Feldman, D. R., & Risser, M. D. (2023). Future Increases in North
American Extreme Precipitation in CMIP6 downscaled with LOCA. Journal of
Hydrometeorology, 1(aop). https://doi.org/10.1175/JHM-D-22-0194.1

Pierce, D. W., Cayan, D. R., & Thrasher, B. L. (2014). Statistical downscaling using localized
constructed analogs (LOCA). Journal of Hydrometeorology, 15(6), 2558–2585.

Pierce, D. W., Su, L., Cayan, D. R., Risser, M. D., Livneh, B., & Lettenmaier, D. P. (2021). An
extreme-preserving long-term gridded daily precipitation dataset for the conterminous
United States. Journal of Hydrometeorology, 22(7), 1883–1895.

Prein, A. F., Liu, C., Ikeda, K., Trier, S. B., Rasmussen, R. M., Holland, G. J., & Clark, M. P. (2017).
Increased rainfall volume from future convective storms in the US. Nature Climate
Change, 7(12), 880–884.

Pumo, D., & Noto, L. V. (2021). Exploring the linkage between dew point temperature and
precipitation extremes: A multi-time-scale analysis on a semi-arid Mediterranean
region. Atmospheric Research, 254, 105508.

Ragno, E., A. AghaKouchak, C.A. Love, L. Cheng, F. Vahedifard, and C. HR Lima. (2018)
Quantifying changes in future intensity-duration-frequency curves using multimodel
ensemble simulations, Water Resources Research, 54(3).

Retrepo-Posada, P.J. and Eagleson, P.S. (1982), Identification of independent rainstorms.
Journal of Hydrology, 55(1-4), pp.303-319.

Rosenzweig, B. R., McPhillips, L., Chang, H., Cheng, C., Welty, C., Matsler, M., Iwaniec, D., &
Davidson, C. I. (2018). Pluvial flood risk and opportunities for resilience. WIREs Water,
5(6). https://doi.org/10.1002/wat2.1302

130

https://www.weather.gov/media/owp/oh/hdsc/docs/Atlas14_Volume10.pdf
https://doi.org/10.1002/wat2.1302


Santer, B. D., Wehner, M. F., Wigley, T. M. L., Sausen, R., Meehl, G. A., Taylor, K. E., Ammann, C.,
Arblaster, J., Washington, W. M., & Boyle, J. S. (2003). Contributions of anthropogenic
and natural forcing to recent tropopause height changes. Science, 301(5632),
479–483.

Seneviratne, S.I, Zhang, X., Adnan, M., Badi, W., Dereczynski, C., A. Di Luca, S. Ghosh, I.
Iskandar, J. Kossin, S. Lewis, F. Otto, I. Pinto, M. Satoh, S.M. Vicente-Serrano, M.
Wehner, & B. Zhou, 2021. (2021). Weather and Climate Extreme Events in a Changing
Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working
Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate
Change (pp. 1513–1766). Cambridge University Press.
https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-11/#11.4

Shepherd, J. M., & Burian, S. J. (2003). Detection of urban-induced rainfall anomalies in a
major coastal city. Earth Interactions, 7(4), 1–17.

Singh, M. S., & O’Gorman, P. A. (2015). Increases in moist-convective updraught velocities with
warming in radiative-convective equilibrium: Increases in Updraught Velocities with
Warming. Quarterly Journal of the Royal Meteorological Society, 141(692), 2828–2838.
https://doi.org/10.1002/qj.2567

Smith, B., & Rodriguez, S. (2017). Spatial Analysis of High-Resolution Radar Rainfall and
Citizen-Reported Flash Flood Data in Ultra-Urban New York City. Water, 9(10), 736.
https://doi.org/10.3390/w9100736

Stansfield, A. M., Reed, K. A., & Zarzycki, C. M. (2020). Changes in Precipitation From North
Atlantic Tropical Cyclones Under RCP Scenarios in the Variable‐Resolution Community
Atmosphere Model. Geophysical Research Letters, 47(12).
https://doi.org/10.1029/2019GL086930

Steinschneider, S., & Najibi, N. (2022). Observed and Projected Scaling of Daily Extreme
Precipitation with Dew Point Temperature at Annual and Seasonal Scales across the
Northeastern United States. Journal of Hydrometeorology, 23(3), 403–419.

Switzman, H., Razavi, T., Traore, S., Caulibaly, P., Burn, D.H., Henderson, J., Fausto, E., and
Ness, R. (2017) Variability of future extreme rainfall statistics: Comparison of multiple
IDF projections, Journal of Hydrologic Engineering, 22(10).

Teale, N., & Robinson, D. A. (2020). Patterns of water vapor transport in the eastern United
States. Journal of Hydrometeorology, 21(9), 2123–2138.

Thakali, R., Kalra, A., and Ahmad, S. (2016) Understanding the effects of climate change on
urban stormwater infrastructures in the Las Vegas Valley, Hydrology 3(4), doi:
10.3390/hydrology3040034.

Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research,
47(1–2), 123–138.

131

https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-11/#11.4
https://doi.org/10.1002/qj.2567
https://doi.org/10.3390/w9100736
https://doi.org/10.1029/2019GL086930


U.S. Weather Bureau. (1955). Technical Paper No. 25 (TP25) Rainfall
Intensity-Duration-Frequency Curves for Selected Stations in the United States, Alaska,
Hawaiian Islands and Puerto Rico. U.S. Department of Commerce.

Utsumi, N., Seto, S., Kanae, S., Maeda, E. E., & Oki, T. (2011). Does higher surface temperature
intensify extreme precipitation? Geophysical research letters, 38(16).

Utsumi, N. (2024) Personal Communication.
Wright, D. B., Smith, J. A., Villarini, G., & Baeck, M. L. (2013). Estimating the frequency of

extreme rainfall using weather radar and stochastic storm transposition. Journal of
Hydrology, 488, 150–165.

Wu, S., Markus, M., Lorenz, D., Angel, J.R. and Grady, K. (2019) A comparative analysis of
the historical accuracy of the point precipitation frequency estimates of four data sets
and their projections for the Northeastern United States, Water 11(6), doi:
10.3390/w11061279.

Yu, Z., Miller, S., Montalto, F., & Lall, U. (2018). The bridge between precipitation and
temperature – Pressure Change Events: Modeling future non-stationary precipitation.
Journal of Hydrology, 562, 346–357. https://doi.org/10.1016/j.jhydrol.2018.05.014

Yu, Z., Montalto, F., Jacobson, S., Lall, U., Bader, D., & Horton, R. (2022). Stochastic
Downscaling of Hourly Precipitation Series From Climate Change Projections. Water
Resources Research, 58(10). https://doi.org/10.1029/2022WR033140

132

https://doi.org/10.1016/j.jhydrol.2018.05.014


Task 4: Systematic Assessment of Health-Related
Economic Costs from Climate-Sensitive Events in

New York City

133



Task 4: Systematic Assessment of Health-Related Economic Costs from
Climate-Sensitive Events in New York City 2000-2019

Core Team Members:
● Matthew Neidell (Columbia University)
● Deborah Balk (CUNY)
● Christian Braneon (NASA)
● Kim Knowlton (NRDC and Columbia University)
● Leiwen Jiang (Population Council)
● Marianthi-Anna Kioumourtzoglou (Columbia University)
● Vijay Limaye (NRDC)
● Santiago Munoz Perez (Columbia University and NRDC)
● Thomas Matte (Columbia University)
● Jenna Tipaldo (CUNY)
● Hamid Zoraghein (Population Council)

NYC Interagency Collaborators:
● Katie Lane (Department of Health)
● Kaz Ito (Department of Health)
● Mallory Rutigliano (Office of Management and Budget)
● NYC DCP (Peter Lobo, Eric Ketcham, Erica Mauer)
● Julia Eiferman (MOCEJ)
● Hayley Elszasz (MOCEJ)

4.1 Key Messages

● Climate-sensitive events over the past 20 years have led to an additional 361 deaths
and at least an additional 1,833 hospital visits and 1,404 emergency department visits
per year in New York City

● These mortality and morbidity cases lead to annual health-related economic costs of
$4.17 billion per year, amounting to a total of $83.45 billion over the 20-year time
period

● Approximately 98.5% of these costs are due to mortality, though the full morbidity
costs are likely underestimated for various reasons

● Using alternative measures to monetize the mortality impacts, we find a range of annual
costs from $1.97 billion to $6.34 billion
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● When applying SSP narratives to the future population, New York City’s population in
2100 will range from 6.2 to nearly 9 million persons. The middle-of-road of road (SSP2)
future projects a population of about 7.5 million whereas the sustainability (SSP1)
future projects a population of 6.7 million in 2100.

● When applying SSP narratives to the future population, New York City’s population in
2100 will be older and in some scenarios much older, with the exception of the regional
rivalry (SSP3) scenario. These changes are unprecedented.

● The future population of New York City is in large part dependent on migration, as
fertility falls and deaths (due to an increasingly older population) rise.

4.2 Objective
Task 4 aims to perform a systematic assessment of the health-related economic costs
attributable to climate-sensitive events in New York City (NYC). In order to do so, Task 4 is split
into understanding the health impacts from exposures to past climate-sensitive events and
their associated costs, as well as understanding future changes in New York City’s population
in order to understand how many, as well as which New Yorkers, and where, these costs are
more likely to occur. This task was thus divided into three distinct parts: (1) A systematic
assessment of the health-related economic costs attributable to climate-sensitive events; (2)
understanding the size and spatial distribution of the population of NYC in the future; and (3)
understanding the implications of future populations on health economic damages. We
conclude with a section on (4) next steps.

a. Health-related economic costs due to past climate-sensitive events

This section aims to perform a systematic assessment of the health-related economic costs
attributable to climate-sensitive events in New York City (NYC). Over the past decade, NYC has
experienced numerous climate-sensitive events, including heat waves, coastal storms,
Nor’easters, and associated power outages. These hazards are considered “climate-sensitive”
because they can reasonably be expected to increase in frequency, intensity, and/or areal
extent as climate change progresses (USGCRP, 2023). A substantial body of evidence has
accumulated on the impacts of these climate-sensitive events on adverse health outcomes.

As part of Task 4, we calculated the impacts from climate-sensitive events during 2000-19 in
New York City according to the following steps:

● Compile available literature that documents the impact of climate-sensitive events on
health outcomes, with a focus on studies relevant to NYC and outcomes amenable to
valuation
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● Calculate mortality and morbidity in New York City attributable to climate-sensitive
events using the dose-response estimates from existing literature

● Monetize the mortality and morbidity cases to calculate the health-related economic
costs from these events

From this analysis, we computed the additional deaths, hospital visits and emergency
department visits per year in New York City due to climate-sensitive events, and monetized
these health impacts to provide estimates of the health-related economic costs.

1. Compile available literature

The aim of this review was to synthesize existing literature that explores the health impacts of
climate-sensitive events relevant to NYC from the year 2000 to 2019. We conducted this
review by performing a systematic search using keywords for studies related to health impacts
of climate-sensitive events, focusing on the following keywords: floods, temperature, rainfall,
precipitation, storm, cyclone, hurricane, Sandy, New York, New York City. Our inclusion criteria
adhered to the following:

● observational studies, reviews (narrative/systematic), and white papers;
● studies conducted in New York City or NYS or that provide NYC-specific estimates;
● studies using outcomes amenable to valuation, which included either mortality or

morbidity resulting in health services assigned an International Classification of Disease
(ICD) -9 or -10 code;

● studies using appropriate epidemiological methodologies, which largely consisted of
distributed-lag linear or non-linear statistical models;

● studies exploring climate-sensitive events that included at least part of the 2000-2019
period.

We used Microsoft Excel 365 (Microsoft Corporation; Redmond, WA), and Zotero 6.0.16
(Corporation for Digital Scholarship; Vienna, VA) to import all the studies obtained from
different databases. We reviewed all studies based on the above inclusion criteria.

After an extensive review, our analysis was refined to three main climate-sensitive events
strongly linked with health impacts in New York City: heat-related events, tropical cyclones,
and power outages. We describe each in turn, noting the specific studies.

Heat-related events. Strong evidence shows New York City’s climate is experiencing higher
temperatures, which is expected to cause hotter warm season weather and increase the
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frequency of extreme heat events, both of which cause morbidity and mortality. DOHMH
(2022) provides estimates of the relationship between mortality and maximum temperature
specific to NYC from 2011-2019.

Several studies provide estimates of the relationship between morbidity and higher
temperatures. Some provide estimates for the entire state, whereas others provide estimates
specifically for the City. Statewide estimates are heavily influenced by the City since it captures
roughly half of the total population, though we use City-specific estimates when available. Lin
et al. (2009) estimated the relationship between average temperature and respiratory
hospitalizations in New York City. Adeyeye et al. (2019) produced estimates of a non-linear
relationship between maximum temperature and hospital and ED visits in NYS for
cardiovascular conditions, dehydration, heat stress, and kidney disease. Estimates were
linearly interpolated between the 5C breakpoints that were directly provided by the authors.
Lin et al. (2016) estimated the relationship between maximum temperature and
gastrointestinal (GI) hospitalizations in NYS. Yoo et al. (2021) produced a non-linear
relationship between average temperature and ED visits for mental health disorders in New
York City. Table 4.1 provides a complete listing of these studies.

Tropical cyclones (TCs). As noted in Task 2 Key Point, TCs generally cause more extreme
hazards compared with other storm types and are responsible for a majority of the most
extreme events, even though they occur far less frequently. Anthropogenic climate change may
lead to increased frequency or severity of hurricanes, posing a greater threat to coastal
communities. In the aftermath of a hurricane, morbidity and mortality can result from injuries,
infectious and parasitic diseases, cardiovascular diseases, neuropsychiatric conditions, and
respiratory diseases. For mortality, we rely on two studies: 1) Parks et al. (2023) provide
estimates of excess mortality counts, along with confidence intervals, at the county level for all
tropical cyclones from 1988-2019; and 2) Seil et al. (2016) provide deaths directly attributable
to Hurricane Sandy in 2012. For morbidity, we rely on Limaye et al. (2019), who provide
monetized health impacts aggregated across numerous hospital and emergency department
visits for the greater NYC area, which includes Westchester, Nassau and Suffolk County, due to
Hurricane Sandy. Appendix 4.1
Table 4.2 provides a complete listing of these studies.

Power outages. With changes in climate, power outages represent a relevant public health
concern as increased electricity demands to offset higher temperatures strain the electric grid.
These power outages could increase the risk of health consequences by limiting the regulation
of indoor temperatures and through disruption in electrically-powered medical devices.
Anderson and Bell (2012) investigated the effect on mortality in New York City due to the
Northeast blackout on August 14-15, 2003. Dominianni et al. (2018) examined the morbidity
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impacts of the same blackout as well as more localized outages in New York City, exploring
hospitalizations due to cardiovascular, respiratory and renal diseases. Appendix 4.1 Table 4.3
provides a complete listing of these studies.

2. Calculate climate-sensitive mortality and morbidity

After identifying the above studies, the next step of our analysis involved calculating the
climate-sensitive mortality and morbidity cases over the 2000-2019 period for the climate
sensitive events. This process involved different strategies depending on the strategies used in
the above studies. In some instances, climate-sensitive cases were directly provided in the
study or obtained from the authors. In other instances, we calculated climate-sensitive cases
by combining the existing dose-response estimate provided in the study with data on
climate-sensitive events and baseline counts of mortality or morbidity.

Heat. Existing studies produced either linear or non-linear estimates of the relationship
between temperature (t) and health, measured by either mortality (md) or morbidity (mb). Since
all studies focused on the relationship between daily temperature and health, we focus on
daily mortality or morbidity measures. When a linear estimate was provided, we proceeded
with the following formula:

(4.1)

where m0
j is the daily baseline counts for j = mortality or morbidity and β = ln(RR), where RR is

the estimated relative-risk produced in the study. When a non-linear estimate was provided,
we proceeded with the following formula:

(4.2)

where ln(DRt) is the non-linear dose-response curve (for each temperature t) produced in the
study. Since these curves were provided in figures, we contacted the authors of each study to
obtain the data underlying such figures.

For choosing the appropriate change in outcomes for each study, we define estimates relative
to a reference point. For mortality impacts, in DOHMH (2022), the authors choose 71°F as the
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reference point (the minimummortality value) and interpret all estimates as relative to the
impact at 71°F. Therefore, the impact at, say, 90°F is defined as 𝛽 = 𝛽90 - 𝛽71. For the morbidity
impacts, we use the reference point as the minimummorbidity value reported in the study or
the value of 71°F when not reported. Lin et al. (2016) and Yoo et al. (2021) did not provide
reference points; since Yoo et al. (2021) used average temperature, we applied the average
temperature that corresponded with maximum temperature for the reference point (64°F). Lin
et al. (2009) provided a reference point for average temperature of 84°F. Adeyeye et al. (2016)
provided a reference point for maximum temperature of 74.8°F for cardiovascular conditions,
76.5°F for kidney disease, 80.6°F for heat stress, 78.1°F for dehydration.

In order to calculate climate-sensitive cases, we defined a threshold above which heat impacts
arise. We apply the methodology from DOHMH (2022), which used a threshold for daily
maximum temperatures above 82°F. For the morbidity estimates, we use this same threshold
of 82°F for maximum temperature (which corresponds to 74.5°F for average temperature)
except when the reference point exceeded the threshold; this only occurred for Lin et al.
(2009), who produced a reference point of 84°F for respiratory conditions.

Temperature data was obtained from the National Weather Service station at LaGuardia Airport
for the years 2000 to 2019. We obtained the daily maximum, mean, and minimum temperature
by date in each year. In instances where mean temperature was unavailable, we averaged the
maximum and minimum temperature. Figure 4.1 shows the number of days above 82°F in
each year from 2000-19, and Figure 4.2 shows the variation in maximum temperature for days
above 82°F. As these figures demonstrate, there is considerable year-to-year variation, with an
upward trend over time.

For an estimate of the baseline daily mortality counts (md
o), we proceeded in several steps.

First, annual mortality counts for the years 2007-2019 were obtained from the annual
Summary of Vital Statistics Reports (NYC Office of Vital Statistics). From this, we created an
annual average of mortality counts. Second, since DOHMH (2022) focuses on deaths from May
through September, we adjusted annual mortality counts to a monthly level. This was
accomplished by incorporating restricted-access data on the monthly count of total deaths for
the years 2007-19. From the restricted access data, we calculated the percent of deaths
occurring in each month from May through September, and multiplied this percent by the
annual mortality counts to obtain the monthly mortality counts for each month. Last, we
divided the monthly counts by 30 to obtain daily mortality counts.

For an estimate of baseline counts for morbidity (mb
o), we followed a similar procedure but

with minor modifications given the different data sources. Counts of hospital and ED visits
(census of counts) were obtained from the Healthcare Cost and Utilization Project (HCUP),

139



using the State Inpatient Database (SID) for hospital visits and the State Emergency
Department Database (SEDD) for ED visits, for the years 2008-19. A restricted-use version of
the data that provides the patient ZIP code was accessed, enabling identification of NYC
residents.5 Using ICD-9 codes prior to 2016 and ICD-10 codes from 2016 forward, we
calculated the annual average morbidity counts for the entire city for each health condition
being considered for the corresponding months given in each study. For example, Lin et al.
(2016) measures GI hospital visits in the months June through August, so we measure
morbidity counts for GI illness for those three months. We then divide the average seasonal
morbidity counts by the number of days in that season to obtain daily morbidity counts.6

Tropical cyclones. Through direct communication with the author (Parks et al., 2023), we
obtained mortality estimates specific to the five counties of NYC. Estimates were provided for
multiple storms across all counties in New York City, but we only used estimates that were
statistically significant, which amounted to an extra 104 deaths in Staten Island from
Hurricane Sandy in 2012. Seil et al. (2016) provided a count of 52 deaths directly attributable
to Hurricane Sandy, of which we excluded 23 that occurred in Staten Island to avoid
double-counting those included in Parks et al. (2023). This led to a total of 133 deaths due to
tropical cyclones, noting all were due to Hurricane Sandy, since 2019.

For morbidity, we relied on estimates from Limaye et al. (2019). As a review study, the authors
provided monetized outcomes across numerous health outcomes for the NYC metro area.
Since this included three additional counties beyond NYC, we weighted the estimates by 2010
population to produce NYC specific estimates. These estimates are also specific only to
Hurricane Sandy.

Power outages. Anderson and Bell (2012) provide direct mortality counts of 90 for the 2003
blackout. For morbidity, we use estimates from Dominianni et al. (2018) to calculate additional
respiratory hospitalizations. Although the study examined several types of hospitalizations, we
focus solely on those with statistically significant estimates, which limited our analysis to the
2003 blackout for respiratory hospitalizations. Since the study provides a linear relative risk
estimate, we apply the method described in equation (1) above, noting we use a variable to
indicate presence of the blackout in place of temperature, obviating the need to specify a
reference point or threshold. This resulted in 410 respiratory hospitalizations due to power
outages.

6 As a measure of quality control, we compared the number of admissions reported in the published
studies with our own calculations using the ICD-9 or 10 codes provided in the studies, and found
comparable counts.

5 The ZIP codes within New York City were based on the 2010 Census (Baruch College, 2020).
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3. Health-related economic costs

To calculate economic costs of these mortality and morbidity changes, we monetize them
using a willingness-to-pay approach for mortality monetization and a cost-of-illness (COI)
approach for morbidity monetization. Specifically, we value changes in mortality using
estimates of the value of a statistical life (VSL) and changes in morbidity (hospital or
emergency department visits) using direct health care costs and the lost wages associated with
the hospital length of stay.

For mortality costs, we use the following equation to produce calculations for each year:

where ∆ is annual mortality (md) cases in year y. For estimates of the VSL, we used recent𝑚
𝑦
𝑑

recommendations from the Department of Health and Human Services (U.S. DHHS, 2021). A
range of VSL estimates were employed to provide low-midrange-high estimates ($5.3 million,
$11.4 million, and $17.4 million, respectively) of mortality-associated costs, in 2020 $USD.7

Cost of illness estimates consisted of health care costs and lost wages, calculated according to
the following equation:

where ∆ is annual morbidity (mb) cases in year y. The first component of the right-hand side𝑚
𝑦
𝑏

of the equation is health care costs and the second is lost wages. For the charge per case, we
use data from HCUP. These data include the primary diagnosis at admission and monetary
charges at discharge, which we use to calculate the charges specific to each outcome,
separately by year. We apply the charges from 2008 to the years 2001-2007, where no HCUP
data was available. Using the patient ZIP code of residence, we calculate charges specific to
NYC residents. Since charges do not reflect actual costs, we produce estimates of health care
costs by scaling the charge estimates by the national cost-to-charge ratio (CCR) per year,
separately for ED and hospital visits, provided by HCUP.8 All cost estimates are inflation

8 CCR was only available beginning in 2001 for hospital visits and 2012 for ED visits. As with the
procedure for charges and LOS, we applied values from the earliest reported year to the prior years.

7 Since we use the VSL measured in $2020, we do not need to apply an inflation adjustment.
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adjusted to $2020 using the seasonally adjusted medical module of the Personal Consumption
Expenditures Index (PCEI) (FRED, 2023).

For lost wages, we followed standard practice by assuming the lost value from a day in the
hospital is valued at the daily wage rate. We calculated the mean LOS in the hospital related to
each ICD code using the HCUP data, again applying the value from 2008 to all earlier years. We
multiplied the total number of cases for each code by its corresponding average LOS value to
obtain the total change in LOS, and multiplied by the average daily wage within the city to
provide a monetary value. We obtained 2020 wage and employment data from the Quarterly
Census of Employment and Wages available from the Bureau of Labor Statistics (BLS, 2024),
which provides data for 95% of US jobs at the county level. We computed the average weekly
wage for NYC by weighting the county wages by employment counts, and divided by five to
obtain a daily wage of $409.05.9

The mortality and morbidity costs were summed across the study area and study period to
provide estimates of the total and annual health-economic related costs due to
climate-sensitive events.

4. Results

Table 4.4 provides an overview of the results. Across all climate-sensitive events, we compute
an annual average of 361 mortality cases, with 97% due to heat. Over the 20-year time period,
there was an average of 1833 hospital visits and 1404 ED visits per year, with 97% and 94%,
respectively, due to heat. Monetizing these impacts, we estimate an annual average mortality
cost of $4.11 billion using the middle VSL. We estimate annual average morbidity costs of
$60.6 million. The morbidity costs are 1.46% of the total costs, suggesting the bulk of health
costs come from mortality, which is not surprising given the high value of the VSL compared to
a hospital or ED admission. The annual average of the total health-related economic costs is
$4.15 billion using the middle VSL, which amounts to $81.91 billion over the time period
2000-19. Using the low VSL lowers the annual and 20-year costs to $1.97 billion and $39.45
billion, respectively, and the high VSL raises the annual and 20-year costs to $6.34 billion and
$126.73 billion, respectively.

The next three figures display the variation in counts and costs per year. Figure 4.3 provides
climate-sensitive mortality counts per year, separately indicating cases due to all
climate-sensitive events and those due solely to higher temperature. Consistent with the
variation in maximum temperature over time, mortality varies over time, ranging from a low of
184 in 2009 to a high of 538 in 2010. The power outage in 2003 and Hurricane Sandy in 2012

9 Since we use wages measured in $2020, we do not need to apply an inflation adjustment
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increased mortality cases in those specific years, with their separate contribution highlighted in
the figure. Figure 4.4 displays climate-sensitive morbidity counts per year, showing results for
hospital visits and ED visits for all conditions. As with mortality cases, this figure displays
considerable variation over time, with a high of 2647 hospital visits in 2010 and a low of 885 in
2009 and a high of 1837 ED visits in 2016 and a low of 713 in 2009. Figure 4.5 plots the
annual costs per year, aggregating the mortality and morbidity costs. We continue to see
considerable variation over time, with a low of $2.1 billion in 2009 and a high of $6.2 billion in
2010.

Population Futures of NYC: Long-term Projections and Spatial Distributions of Population

To understand and prepare and adapt to the impacts of future climates, it is necessary to know
the population of a future population of New York. State and local projections have a long
tradition using a method called “cohort-component” or closely related methodologies, that
produce population futures in the fairly near-term time horizons, in order to reduce uncertainty
in the estimation that can arise in local-area projections. This stands in contrast to global
population forecasting which includes long-term time horizons and often use a variety of
demographic, statistical and exploratory scenario methods (see review in Balk et al., 2022). As
part of the New York Metropolitan Transportation Council, New York City’s Department of City
Planning (DCP) projects the total population of NYC to be nearly 9.5M in 2055 (Morozovskaya
and Lund, 2020), gaining small amounts of population from the present population of about
8.8M. Using a downscaling method, the city allocates the total population to the census-tract
level. These projections result in population projections by age and sex, but they do not
account for race/ethnic compositions, or under different internal and international migration
circumstances. Nevertheless, in a recent neighborhood analysis, DCP (2023) finds: “Roughly
half of neighborhoods experienced net outflows [from 2010-2020]. The vast majority of these
still experienced population growth through natural increase, reflecting the citywide pattern of
population growth despite net migration losses.”  Understanding such neighborhood change
and associated vulnerabilities is important for understanding the future health impacts and
flood vulnerabilities.

Thus, to improve thematically, temporally and spatially, we apply a population projection
methodology that is used within the climate community, by adopting the shared
socio-economic pathways (SSP) framework for developing future population scenarios. This
method, developed initially for global application, has been adopted for all states and counties
of the U.S. (Jiang et al., 2020, Zoraghein & O’Neill, 2020a, 2020b). The steps to produce those
population futures, and resulting output, are described below, along with a basic demographic
description of New York in the present period, and recent past.
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Input data used for SSP-consistent population projections

Population projections are built on data on population age-sex structure, as well as information
on births, deaths, and migration. If population projections are desirable to produce by other
characteristics (such as educational groups or race and ethnic subpopulations), such
information must be available on the data input side. That is, to produce population projections
by age-sex-race/ethnicity groups for New York City, it is necessary to know historical
information on fertility, mortality and migration by age-sex and race/ethnicity groups. Further, if
such information is desirable by borough (or finer-scale geographic units), then those variables
would be necessary further stratified by those geographic divisions. In short, the data
requirements for this type of analysis are large, in some part because migration information is
sparse. During the data collection phase, we also determined it would not be possible to
produce robust projections below the county-level (as there were too many input units with
missing values), and thus defer the spatial distribution component to downscaling.
As Figure 4.1, an analysis of the DCP, shows citywide race/ethnic composition, New York City is
increasingly diverse, from the 1950s to the present. Thus, the data we collected were
specified by major race/ethnicity groups (Asian and other races, (non-Hispanic) Black,
Hispanic, (non-Hispanic White) as these strata were available in all data collections we used in
the analysis.
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Figure 4.1: Share of Population by Race/Hispanic Origin, New York City, 1950-2020. Source:
(City of New York Department of City Planning, 2023).

Figure 4.2, showing population pyramids, is compiled from our analysis using data from 2010
Census (10% sample, IPUMS), and demonstrates that population compositions by age, sex,
and race differ substantially across the boroughs of New York City. (Age is shown in 5-year age
groups on the y-axis; males on the left half and females on the right half; race/ethnicity groups
indicated by color: blue=White, orange=Hispanic, black=Black; yellow=Asian.) While the
population in Manhattan is dominated by young adults aged between 25 and 40 and has an
extremely low share of school-age children, the Bronx and Staten Island display relatively high
proportions of school-age children and, with Staten Island having more middle-aged persons
relative to the Bronx. The racial distribution of the population in Brooklyn is rather even, while
all other boroughs exhibit larger shares of some populations than others: the population in the
Bronx is mostly Hispanic and Black and Queens has a very large share of Asians, whereas
Staten Island has a majority White population.

DCP also undertakes periodic short-term analysis of the dynamics of racial and ethnic
composition of NYC neighborhoods (City of New York Department of City Planning, 2021)
(DCP., 2021). New York City’s remarkable diverse population is not evenly dispersed (nor has it
ever been) across boroughs or neighborhoods. To understand neighborhood change, DCP also
examines decadal change in new construction at the neighborhood level and places these in
the context of the change in the racial and ethnic composition of neighborhoods (DCPs “Net
New Housing Construction, 2010-2020"), information essential for understanding climate
impacts with a racial justice lens despite the short-term nature of the change analysis.”
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Figure 4.2: Population by age, sex and race for New York City, 2010 (source: authors

calculations based on data from 10% sample of U.S. Census microdata, IPUMS). (For higher

resolution images see document.)

Methodology

The methodology is divided into three parts: (1) develop demographic assumptions of
population futures associated with the SSPs; (2) project the population futures to 2100 with a
“multiregional” demographic model; (3) downscale those future populations.

Demographic Assumptions of the Shared Socioeconomic Pathway (SSP) Narratives

In order to project to 2100 in a manner consistent with plausible emissions pathways, the SSP
narratives (Riahi et al., 2017) must make assumptions about population processes -- fertility,
mortality and life expectancy, migration -- and this has been undertaken as part of a
deliberative process at the global scale (KC and Lutz, 2017). Extensions of the SSPs for cities
and smaller than national regions are new (Rohat et al., 2019, 2021), and must expand the
input narratives to address migration to and within cities. Thus, as a first step in this exercise,
and with feedback from demographic analysts at DCP, we identified assumptions about the
demographic rates that correspond to the SSP narratives. The projection was undertaken for
population by age and sex by borough and broad race/ethnicity groups, but the narratives and
their associated assumptions about future population change (such as fertility, mortality and
migration futures) were not crafted to be borough-specific or race-specific groups. As a
first-attempt to adapt global narratives to New York City and to imagine long-term population
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futures, future work could expand these further with narratives about different future
demographic rates by borough and race/ethnicity groups. SSP2 -- also called middle of the
road -- assumes constant medium fertility, mortality, international and domestic migration; and
assumes that the internal migration rates remain unchanged. SSP2 is the first scenario that
was explored as its assumptions are most similar to currently observed rates. An SSP1 world is
considered a sustainable world, and as such has low fertility, low mortality, and medium low
international migration and domestic migration with the rest of the county, but a medium high
internal migration between NYC counties. SSPS -- characterized by a conventional
development and fossil fuel dependent world -- assumes medium low fertility, low mortality,
high international and domestic migration, as well as high internal migration. We highlight
these three divergent pathways below. (The two other SSPS are: SSP3 -- which carries the
name regional rivalry from the global framework -- is characterized by high fertility and high
mortality, low international and domestic migration and medium low internal migration rates.
SSP4 -- known as the highly unequal future -- with with very low fertility, medium mortality,
medium high international and domestic migration, but low internal migration.) [See
Supplemental Materials for the specific application of the changes in demographic rates
associated with these underlying assumptions.]

Projection of Population to 2100

We develop a multidimensional and multiregional demographic model for making the
county-level population projections. The model is based on the widely-used multistate
demographic method and extended from the multiregional model developed by Rogers (1991,
1995, and 2015). For each county, the population is distinguished by age, sex, and race (Figure
4.3a). Age-, sex- and race-specific mortality and fertility are applied to corresponding states of
the population leading to reduction and addition of its population. Population also changes due
to migration. More importantly, the bilateral migration flows between each of two counties
connect all counties into an integrated demographic system (Figure 4.3b). Any changes in a
single county due to each component of demographic events (fertility, mortality, internal and
external migration of two varieties -- international and domestic) will have impacts on other
counties and consequently change the population of the whole city. Moreover, external
migrations, either the in- and out-migration from and to other parts of the country or the
immigration and emigration from and to foreign countries, also contribute to the population
changes of all the counties and the whole city.
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Panel A.

Panel B.

Figure 4.3: Schematic of inputs required for multiregional and multidimensional population
projection model by age, sex, and race/ethnicity groups.

The accounting strategy of the model is expressed in the equation below (4.5).
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Equation 4.5

The population by single year of age (0, 1, …), sex (f, m), and race (r1, r2, …) of each county are

projected forward in single-year step by a multidimensional transition matrix
where Bf and Bm are the matrix of birth rates of female population for girls and boys, Sf and Sm
are the survival ratio for female and male population. The survival matrix of Sg is derived from
the matrix which is constructed based on the combined mortality rate and migration rate.

Using this multiregional and multidimensional model, three goals can be achieved. First, it
assists in addressing New York City's demographic heterogeneity, especially racial differences.
The model not only accounts for current differences in racial, age, and gender compositions
between counties, but also for considerable differences in mortality, fertility, and migration
rates by races that will affect future population dynamics in the counties. Furthermore, the
multiregional model structure is capable of projecting the population changes of all counties
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simultaneously and achieving consistent results for each county and for the City as a whole.
Lastly, it provides a model system that meets the requirements for developing scenarios under
a variety of socioeconomic and demographic conditions. The model integrates not only all
counties into one system through bilateral migration flows, but also connects them to other
parts of the country and the world through domestic and international migration. Using this
model system, it is possible to make assumptions about future socio-demographic changes
that are consistent with the global and national scenarios under the SSP framework.

To make multidimensional population projections for local places like the New York counties,
we adopt various indirect estimate techniques, model schedules, and other demographic
methods to address data limitations. For instance, theWhipple Index and Myers Index are
applied to correct for age heaping (that is, when population counts “heap” on round numbers,
such as those ending in 5 and 10, in part due to recall error when individuals report their age)
and other problems related to inaccurately reported ages of the populations. We further use
the Brass Relation Model to fill gaps of missing data on child mortality (suppressed due to small
numbers of observation) for “Asian and other races” in all counties.

Downscaling borough-level future population

We further downscale aggregate (borough-level) population projections of the five counties to
100m resolution grid cells using gravitational population downscaling models (Grubler et al.,
2007, Jones & O’Neill, 2013, 2016). These models operate at the grid cell level and assume
that people tend to settle closer to already populated places. They parameterize the effects of
distance decay and local attractiveness using optimization approaches based on historical
grid-based population distributions. They assign a suitability weight to each cell informing its
population share from the larger geography. We use Equation 4.6 to derive suitability values.

Equation 4.6

Where vi is the suitability weight representing the share of population to be assigned to the
focal grid cell i, li is the proportion of cell i available for allocation, which is derived by
employing physical layers that determine the land availability for population allocation, Pj is the
population of neighboring cell j at time t, and dij is the distance between cells i and j. The
number of neighboring cell indices Ni is determined by the gravity window within which the
distance-decay effect applies, which we set to 40 km for New York City. Finally, the α and β
parameters govern the importance of existing surrounding population concentrations within
the 40km neighborhood and their accessibility (as a function of distance) in determining the
suitability value, respectively.
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The downscaling model is composed of two components, namely calibration and projection.
The calibration component uses historical population grids and an optimization approach to
estimate the best values for α and β that minimize differences between observed and modeled
population grids. The projection component then either uses the estimated values or adjusts
them following the scenario guidelines to downscale projected population values at the county
level to their constituent 100m resolution grid cells.

We used census blocks and parcel records to create historical population grids for New York
City in 2000, 2010 and 2020. We first used the built-year attribute of parcel records to
generate the three snapshots, and then allocated population values of blocks to residential
parcels weighted by the number of their units. This approach only assigns population values to
grid cells within the city boundary. However, we also need population values for the 40 km
buffer area around the city. Therefore, we also used GHS-Pop (Schiavina et al., 2023a)
products in 2000, 2010 and 2020 from the Global Human Settlement Layer (GHSL) for the
buffer area (Schiavina et al., 2023b). This led to historical population grids in the three years
for New York City and its surrounding areas (Figure 4.4).

Figure 4.4: Historical population grids in 2000, 2010 and 2020 for New York City and its
surrounding areas.

To create a mask layer and quantify li values for each grid cell within New York City, we apply
different layers, such as protected lands (e.g., national parks), highways and buffers around
them, water bodies, cemeteries, and airports to exclude areas within each grid cell. Figure 4.5
shows the current mask layer with values ranging from 0 to 1 demonstrating how much of each
pixel is available for population allocation, noting that most area fall into either the first quartile
(areas that we do not expect future habitation) or the highest quartiles (areas currently
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inhabitant and available for future inhabitation); the middle quartiles represent areas that are
comprised of mixed pixels (areas made up of partially protected area and partly inhabited
areas).

According to future scenarios rooted in technological developments and policy decisions, we
also consider adjusting the estimation of li. For example, we may exclude areas that fall in
locations prone to sea level rise to conform to SSP1, the scenario where sustainability is
prioritized.

Figure 4.5:Mask layer for New York City regarding suitability for population allocation.
Suitability is determined by calculating the proportion of land area in a pixel that is suitable for
population allocation, such that it is an area that may have residential housing (not considering
the amount of housing currently has) and is not an area that is unlikely to be developed in the
future (such as parks, cemeteries, airports, or roads). Higher (darker) values indicate a higher
proportion of that pixel has suitability for population allocation to grid cells.

NYC is well known for its ethnic neighborhoods, some of which have emerged, grown, or been
displaced over time. We investigated geographic clustering by race/ethnicity and age over time
to assess historic trends and the stability of clusters of demographic groups who may vary in
their vulnerability to climate change impacts, at a sub-borough level, in order to help frame the
downscaling component of this research.
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Spatial analyses at the Census tract level revealed clustering with regard to the proportion of
people living in each tract who identify with four racial/ethnic groups non-Hispanic Black,
non-Hispanic White, Asian, and Hispanic) as well as who are aged 65 and above. The
composition of Census tracts in decennial years was analyzed using a Local Indicators of
Spatial Autocorrelation (LISA) analysis based on available data from the National Historical
Geographic Information System online database (NHGIS). Race/ethnicity data was available at
the Census tract level from 1970 through 2020 (Hispanic) or 1980 through 2020 (non-Hispanic
White, non-Hispanic Black, Asian) and age data was available from 1970 to 2020. LISA
analyses generate local statistics (for each tract) that indicate geographic clusters and outliers
(Anselin, 1995). To determine stability over time, since Census tract boundaries have changed
within the time period, a spatial join using 2020 tracts was performed to determine if the
centroid of a 2020 tract was contained within a high-high cluster for other years, which were
calculated based on tracts and corresponding data for each decennial year. Figure 4.6 shows
trends over time in high-high clusters of the proportion per tract of each of four race/ethnicity
categories and Figure 4.7 shows high-high (HH) clusters for proportion over 65 years of age.
There is considerable clustering and stability over time for each racial/ethnic group as well as
for population over 65 years of age.

Figure 4.6: Local Indicator of Spatial Autocorrelation (LISA) Maps by race and ethnicity,
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tract-level. Note: Census tract boundaries may include some areas where people do not
actually live, as indicated in the spatial mask in Figure 4.5. (source: authors calculations based
on data from US Decennial Census data, NHGIS)

These maps show census tracts identified as being part of high-high (HH) clusters in a Local
Indicators of Spatial Autocorrelation analyses of proportion of tract of each race/ethnicity
category. The top row shows census tracts that were identified as high-high in any decennial
year (1980-2020 for non-Hispanic Black, non-Hispanic White, and Asian and 1970-2020 for
Hispanic) with colors indicating how many decennial years that tract was in the high-high
cluster. The bottom row shows the tracts that were identified as part of the high-high cluster
for 2020 with colors indicating how many continuous previous decennial years that tract was
identified as part of a high-high cluster.

Figure 4.7: These maps show census tracts identified as being part of high-high clusters in a
Local Indicators of Spatial Autocorrelation analyses of proportion of people over the age of 65
years in decennial census years 1970 through 2010. Note: Census tract boundaries may
include some areas where people do not actually live, as indicated in the spatial mask in Figure
4.5. (Source: authors calculations based on data from U.S. Decennial Census data, NHGIS)

By identifying key change patterns in neighborhoods, the downscaling can maintain such
patterns in the future, or loosen them, in accordance with the various SSP scenarios.
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Results

The following results are preliminary as of this writing. Using an SSP2 narrative, we begin by
estimating the current population -- as a check on our methodology -- and find a total
population of NYC at around 8.8 million in 2020, which is reasonably similar to the recorded
population of the City of 8.77 million persons. Figure 4.8 shows the total population for NYC
each SSP throughout the century. As for the projected population in the future, under an SSP2
future, the total population is expected to reach a maximum of nearly 9 million in 2040, and is
estimated to be around 7.5 million in 2100. In an SSP1 world, population also declines to a
much lower level of 6.7 million by the end of the century, but remains close to 8.5 million
mid-century. SSP4, the unequal future, also sees population loss to 6.2 million at the end of
the century. Growth is seen in both SSP3 and SSP5, with population reaching near 9.2 million
mid-century in SSP5. It is notable that in none of these narratives that the future population of
NYC grows by more than an additional million persons from its current population size. (This
may be as much a constraint in our imagining of future demographic narratives as it is in the
observed historical patterns and trends from which the futures rates are applied.)

Figure 4.8: Population Projection for New York City according to five adapted Shared
Socioeconomic Pathways, through 2100.

As for comparison, if we assume the constant demographic rates from 2010 continue into the
future, and remain unchanged throughout the century (a pattern heretofore unobserved but
frequently used by models that simply interpolate future trends based on the past decade), we
project the population was at its maximum in 2010 and continues to decrease until it reaches
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5.8M in 2100. (The annual series for this constant rate series and the five SSPs are shown in
Supplemental Table 4.5.)

Population for each borough, projected and for the historical period, according to SSP1, SSP2
and SSP5 is shown in Figure 4.9.

Figure 4.9: Population by borough, for the historic period (1950-2022) and future
(2010-2100) corresponding to the SSP1, 2 and 5 narratives. Historic indicates historic record
(solid line) and projection has dashed line.

The city-wide fluctuations (Figure 4.8) are in part due to differences in borough-specific
growth, seen in Figure 4.9, where in an SSP5 world growth is predicted for Manhattan,
Brooklyn and Queens but declines for the Bronx. (Staten Island’s population remains largely
stable.) These changes result from assumptions about natural increase -- fertility and
mortality -- as well as migration (international, in-and-out domestic [i.e., between NYC and the
rest of the U.S.], and internal [between boroughs of NYC]). Figure 4.10 shows the
decomposition of future population change. For example, under SSP2 the population of Queens
(bottom middle panel), which is a destination for many international migrants, is projected to
decline as its fertility declines and as residents (including new international migrants)
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out-migrate to the rest of the U.S.

Figure 4.10: Demographic components of change (internal migration, domestic migration,
international migration, births and deaths) according to an SSP2 future, all NYC and by
borough.

As seen in Figure 4.10, all else equal, migration (domestic and international) is an important
contributor to the future population of NYC, especially in futures where natural increase (births
minus deaths) continue the current pattern of decline. Predicting migration rates, particularly
at a sub-city level, is much more variable than predictions of changes based on fertility and
mortality which have fairly stable long-term trends. Associated with these trends are important
implications for population aging. In sum, the total population size as well as the age and
race/ethnicity composition of NYC will be largely impacted by migration trends, such as the
magnitude of international immigration and the rate of migration from NYC to and from other
parts of the U.S.

Figure 4.11 shows the implications of an SSP2 future on the race and ethnic composition in the
city, by borough. The Black population as a share of the total population declines, largely
because in the observed historical period, the share as well as the absolute number of New
York City’s Black population has been declining (DCP 2023). This is most notable in Brooklyn
but occurs in all boroughs. Other notable shifts include increasing shares of the White
population of Brooklyn and the Asian population in Queens. Staten Island also sees an
increasing share of the Asian population from mid-century onward. (Similar broad-strokes
patterns are observed across all SSPs.)
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Figure 4.11: Changes in race and ethnic composition of New York City, to 2100 according to an
SSP2 future.

Finally, this exercise allows us to project future population by age (and borough) and race,
shown in Figure 4.12 for all NYC by SSP. In all future scenarios, NYC population is much older,
except for SSP3. In SSP1 (the sustainable future), SSP3 (inequality), and SSP5 (the fossil-fuel
development) the population pyramid is inverted showing that there are more older adults than
young persons. This has implications for future growth, but also for vulnerability to climate
change. (The gender-unevenness, driven by more young women relative to men, seen clearly
in 2010 makes its way through the pyramid as population ages.)
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Figure 4.12: Population pyramid projected for New York City, 2100 by 5 SSPs compared to
2010.

4.3 Next steps

The Task 4 team conducted a valuation of human health-related costs associated with the
harmful impacts of several types of climate-sensitive events in New York City, between the
years 2000 to 2019. The hazards considered include mortality (premature deaths) and
morbidity (illnesses) from heat, tropical cyclones, and power outages during the study period.
Valuation studies can contribute to our understanding of climate change’s impacts on New York
City for several reasons: health impacts of observed climate hazards are very seldom
incorporated into economic assessments of climate change’s effects; these analyses
demonstrate the possible future costs of continued greenhouse gas emissions without more
robust adaptation investments; and the cost estimates can help target health interventions to
avoid even more dramatic impacts costs and evaluate the effectiveness of adaptation
measures (Limaye et al., 2020).

Our overall estimates of morbidity cases should generally be considered conservative tallies of
total morbidity for at least two reasons. First, since our analysis was not a climate attribution
study but instead relied on estimates from existing studies, we limited our investigation to a
subset of epidemiological studies that examined climate hazards in New York State or City. For
example, we did not investigate the health-related impacts of ambient ozone air pollution or
airborne allergenic pollen, even though those types of health hazards have been characterized
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in other geographies during our overall analysis period (Cromar et al., 2016; Anenberg et al.,
2017). Likewise, we did not capture the impacts of heat on non-health care related impacts,
such as academic performance (Park et al., 2020) and labor market outcomes (Graff Zivin and
Neidell, 2014) because geographically-appropriate estimates were not available. As such,
there are likely to be other climate-sensitive events or outcomes relevant to NYC that our
analysis did not capture. Second, even for the climate-sensitive hazards that we did analyze,
we could not quantify the full range of health effects known to be associated with each
climate-sensitive event. Our health cost estimates include ED and hospital visits, but do not
include other types of health care impacts, such as outpatient care, use of prescription
medications, and home health care services. While other healthcare cost and utilization
databases can enable estimation of these additional health-related costs (Declet-Barreto et al.,
2021), we lacked epidemiological evidence relevant to NYC for these additional endpoints.
Additional epidemiological evidence relevant to NYC is an important step for understanding the
full range of morbidity impacts.

The process for monetizing the mortality and morbidity counts required assumptions that
introduced two important limitations. First, we valued changes in mortality as lives lost rather
than life-years lost, a necessary step given that the existing studies provided estimates of
changes in mortality counts and not changes in life expectancy. Without knowing the changes
in life expectancy that accompany the loss in mortality, it is difficult to assess the impact of this
assumption on the total monetary value we estimate. Second, our morbidity costs were
calculated using a cost of illness approach, which only includes health care costs and lost
wages. This approach generally understates the true costs from environmental impacts
(Harrington and Portney, 1987), excluding factors such as pain and suffering people experience
from climate-sensitive events and avoidance behaviors people engage in to reduce the impacts
from climate-sensitive events. Epidemiological evidence of the impacts of climate-sensitive
events on these other outcomes relevant to NYC was unavailable. Both of these limitations
represent important areas for improving the monetized values.

Another important limitation in our analysis regards the role of adaptation. Throughout the
analysis, we assume a constant dose-response relationship between the climate-sensitive
event and health outcomes. Various adaptations, such as residential air conditioning (AC), can
moderate the impact of climate-sensitive events. Since access to such technologies varies
throughout the city, their benefits are unlikely to be evenly felt across the city. Accounting for
such technologies not only affects the estimated dose-response relationship between the
climate-sensitive event and health outcome, but also represents a defensive health cost
expenditure that is part of the cost of exposure to climate-sensitive events. Future efforts to
incorporate this adaptation is important for understanding the full economic costs from a
warmer climate.
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The health effect estimates and corresponding economic damages we estimated represent
aggregate numbers for the entire city. Marginalized populations, including low-income
populations, populations of color, and Medicare and Medicaid recipients, shoulder a
disproportionate burden of the health harms of climate change (U.S. Global Change Research
Program, 2016; Limaye et al., 2019). This burden is linked to disproportionate exposures to
climate hazards, higher rates of pre-existing health conditions that make people more
vulnerable to climate hazards, and economic insecurity related to lack of healthcare access
and affordability (Limaye, 2022). For example, for our heat vulnerability analysis, we estimated
morbidity and mortality linked to a uniform estimate of temperature applied across the entire
city population, which did not represent the spatial variability in vulnerability to hot weather
that has been demonstrated by other studies of NYC (Declet-Barreto et al., 2021, Rosenthal et
al., 2014, Madrigano et al., 2015). Further efforts to understand the distribution of these
impacts across the City will highlight important gaps in our understanding and help to better
direct city resources.

Additional next steps for population futures include downscaling constraints (including one for
an “equity” based future, and one that prevents future population from living in expected
floodable areas). Results of downscaling maps (not included in results above) will also be
shared, including adding layers of future flood zones, consistent with a ‘sustainability’ SSP
narrative.

In addition to exploring the implications of all five SSP narratives for NYC, another next step is
to look at the implications of these narratives for the population composition as broken down
by age, gender, and race/ethnicity for each borough - different narratives may produce highly
varying racial compositions, in part because of the differential rates of fertility and mortality, as
well as migration, assumed by more and less equal or affluent socioeconomic futures. The
different SSP narratives also reveal the possibility of aging pathways -- that is, the degree and
pace of population aging -- which has important implications for climate adaptation planning
but these were not showcased herein. Another next step would be to facilitate further
development of these SSP narratives with a wide range of engagement, including stakeholders
such as city planners and community members. These narratives could make borough- or
race/ethnicity-specific adjustments or assumptions about demographic futures, for example,
exploring the potential demographic conditions that might foster or respond to future higher
density development in areas that have more single-family housing such as Staten Island or
Eastern Queens (such as through migration and fertility).

Finally, additional next steps for integrating health impacts with future populations here will be
to link the population future with the possible future health exposures, in order to estimate
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future health cost by race/ethnicity and age, as well as neighborhood. This will allow us to
associate health costs with futures that take different expected pathways.
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Appendix 4.1

Table 4.1: Summary of heat-health studies relevant for NYC

Study Location
& time
period

Months
analyzed

Outcome Visit ICD9 or
10 codes

Temp.
measur
e

RP (°F) TT
(°F)

DOHMH
(2022)

NYC,
2011-20

May-Sep Natural
cause
mortality

- <800;
A00-R99

Daily
Max.
Temp.

71 82

Yoo et al.
(2021)

NYS,
2009-16

all year Mental
health

ED 290-319;
F00-F99

Daily
Ave.
Temp.

64 74.5

Lin et al.
(2016)

NYS,
1991-20
04

Jun-Aug GI H 1-5, 8,
8.6, 6, 7,
9

Daily
Max.
Temp.

71 82

Adeyeye
et al.
(2019)

NYS,
2008-12

May-Sep Heat
stress

ED &
H

992.0–99
2.9;
E900.0,
E900.9

Daily
Max.
Temp.

80.6 82

Dehydrat
ion

276.51 78.08 82

AKF 584.5–58
4.9

76.46 82

CVD 390–398,
401–405,
410–417,
420–438,
440–448,
451–459

74.84 82

Lin et al.
(2009)

NYC,
1991-20
04

Jun-Aug CVD H 393–396,
401–405,
410 –
414, 427,
428,
430–434,
436–438

Daily
Max.
Temp.

84.92 84.92
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Respirato
ry

491, 492,
493, 496
(plus 466
and 490
for age
0-4)

84.02 84.02

Notes: H = hospital visits, ED = emergency department visit, GI = gastrointestinal, AKF = acute
kidney failure, CVD = cardiovascular, RP = reference point, TT = temperature threshold.
Reference point is the reference category for the relative risk. Temperature threshold is the
threshold above which we calculate climate-sensitive events.

Table 4.2: Summary of tropical cyclone studies relevant for NYC

Study Location Time Period Event(s) Outcome Visit ICD9 or
10 codes

Parks et
al. (2023)

United
States

1988–2019 Tropical
Cyclones

All-Cause
Mortality

A00-Y89

Seil et al.
(2016)

NYC 2012 Hurricane
Sandy

External
cause of
death

X37

Limaye et
al. (2019)

New York
State

2012 Hurricane
Sandy

Various
morbidity
outcomes

ED & H

Notes: H = hospital visits, ED = emergency department visit. Although Parks et al. estimated
mortality impacts for all tropical cyclones, only estimates for Hurricane Sandy were statistically
significant.

Table 4.3: Summary of power outage studies relevant for NYC

Study Location Time Period Event(s) Outcome Visit ICD9 or 10
codes

Anderson et
al. (2012)

New York
City

2003 2003
Northeast
Blackout

All-Cause
Mortality

A00-Y89
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Dominianni
et al. (2018)

New York
City

2003 2003
Northeast
Blackout

Respiratory H 490-497,
J40-J47

Notes: H = hospital visits

Table 4.4: Total health-related cases and economic costs from climate-sensitive events in New
York City, 2000-19

Climate
Sensitiv
e event

Mortality
counts

Hospital
visits

ED visits Mortality
costs
(mid-VSL,
$bn)

Morbid
ity
costs
($bn)

Total
costs
(mid-VSL,
$bn)

Total
costs
(low-VS
L, $bn)

Total
costs
(high-VSL,
$bn)

Heat 6,991 35,698 26,429 79.69 1.13 80.83 38.18 122.77

Power
Outage

90 410 - 1.03 0.01 1.03 0.48 1.57

Tropical
cyclones

133 552 1,659 1.52 0.08 1.59 0.78 2.39

Total 7,214 36,660 28,088 82.24 1.21 83.45 39.45 126.73

Annual
Average

361 1,833 1,404 4.11 0.06 4.17 1.97 6.34
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Figure 4.9: Number of days with daily maximum temperature above 82°F in New York City,
2000-2019

Notes: Maximum Daily Temperature from 2000 to 2019 was obtained from the NOAA station at
LaGuardia Airport. This data encompasses all days of the year.
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Figure 4.10: Variation in maximum daily temperature for days above 82°F in New York City,
2000-2019

Notes: Daily Maximum Temperature from 2000 to 2019 was obtained from the NOAA station at
LaGuardia Airport. This data encompasses all days of the year. The top and bottom of each line
represents the maximum and minimum temperature, respectively, for each year. The top and
bottom of each box represents the 75th and 25th percentile, respectively, for each year. The
middle line represents the median for each year.
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Figure 4.11: Mortality from climate-sensitive events in New York City, 2000-2019

Notes: This figure shows the total mortality counts due to climate-sensitive events per year.
The solid line shows total mortality counts due to all climate-sensitive events (heat, power
outages and tropical cyclones) and the dotted line shows total mortality due solely to heat.
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Figure 4.12: Cardiovascular and total morbidity cases from climate-sensitive events in New
York City, 2000-2019

Notes: This figure shows the total morbidity counts due to climate-sensitive events per year,
separately for hospital visits (dashed line) and ED visits (solid line).
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Figure 4.13: Annual estimated health-related costs (in billions of 2020 $USD) from
climate-sensitive events in New York City, 2000-2019.

Notes: This figure shows the total health-related economic costs due to climate-sensitive
events, under different values for the VSL.
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Task 5: Flooding Vulnerability Index for New York
City
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Task 5: Flood Vulnerability Index for New York City

Core Team:
● Timon McPhearson (Co-lead, The New School)
● Malgosia Madajewicz (Co-lead, Columbia University)
● Pablo Herreros-Cantis (The New School)

Advisory Team
● Jerry Kleyman and Mary Kimball (Arcadis)
● Franco Montalto (Drexel University)
● Bernice Rosenzweig (Sarah Lawrence)
● Brett Branco (CUNY/SRIJB)
● Katie Graziano (Sea Grant/Cornell)
● Lindsay Campbell (US Forest Service)
● Erika Svendsen (US Forest Service)
● Michelle Johnson (US Forest Service)

NYC Interagency Collaborators:
● Jessica Colon (Mayor’s Office of Climate & Environmental Justice)
● Carrie Grassi (Mayor’s Office of Climate & Environmental Justice)
● Hayley Elszasz (Mayor’s Office of Climate & Environmental Justice)
● Erika Jozwiak (Mayor’s Office of Climate & Environmental Justice)
● Katie Lane (Department of Health and Mental Hygiene)
● Kaz Ito (Department of Health and Mental Hygiene)
● Gregory Mayes (Department of Environmental Protection)
● Alan Cohn (Department of Environmental Protection)
● Novem Auyeung (Department of Parks and Recreation)
● Georgina Cullman (Department of Parks and Recreation)
● Melissa Umberger (Department of Emergency Management)
● William Pappas (Department of Emergency Management)

5.1 Objective and overview: New York City’s Flood Vulnerability Index
NYC experiences multiple types of flooding, including pluvial flooding, storm surge, tidal
flooding, groundwater flooding, riverine, and compound flooding. The occurrence and
magnitude of each flooding type is moderated by a different combination of biophysical and
meteorological factors. Researchers are at disparate stages of understanding the different
flooding types in New York City. While substantial knowledge and advanced hazard mapping
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exist for flooding due to storm surges, pluvial flooding is less well understood and research on
groundwater flooding is in even earlier stages.

The objective of Task 5 was to develop a Flood Vulnerability Index (FVI) for NYC that assesses
the distribution of vulnerability to flooding across the population of NYC in order to guide flood
resilience policies and programs. Based on a literature review, the team used a definition of
vulnerability that consists of three components: exposure to a hazard, susceptibility to harm
from the exposure, and capacity to recover (Cutter et al., 2009).

In collaboration with MOCEJ, Interagency Collaborators, and the advisors, the Task 5 team
produced six hazard-specific FVIs, one for each of six different flood hazard scenarios, which
include current and two future storm surge scenarios and current and two future tidal flooding
scenarios. Exposures vary widely for different types of flooding and different scenarios within
each flood type. The resulting separate FVIs for different flood hazard scenarios are easier to
interpret and can provide clearer guidance for decisions than would an index that combines
exposure to all types of flooding.

Each FVI consists of two component sub-indices: an exposure index and an index that reflects
susceptibility to harm and capacity to recover. The exposure index is different in each FVI in
order to capture the different exposures to each of the flood hazard scenarios. The sub-index
that reflects susceptibility to harm and capacity to recover, which we call the Flood
Susceptibility to Harm and Recovery Index (FSHRI), is the same in each FVI. It aggregates
twelve socio-economic indicators correlated with various types of hardships that people may
suffer due to flooding and different dimensions of ability to recover. Figure 1 demonstrates the
process of producing the six FVIs.

5.2 Key Messages

● The FVIs are based on one of the most comprehensive and widely accepted
definitions of vulnerability, consisting of three components: exposure to hazard,
susceptibility to harm from the hazard, and capacity to recover. The definition
covers dimensions of vulnerability that policies and programs need to consider
in order to reduce vulnerability.

● The FVI is constructed from two component sub-indices that correspond to this
definition. First, the exposure sub-index is a function of proximity to flooding caused by
a specific event. Second, the sub-index that reflects susceptibility to harm due to
flooding and capacity to recover is a function of sociodemographic characteristics
known to be associated with the outcomes experienced during and after flooding by
populations in New York City.
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● Mapping vulnerability for different flood hazard types highlights how
vulnerability differs across types of hazards and allows vulnerability maps to be
easily updated over time as the understanding of hazard exposure improves.

● The FVIs provide guidance regarding vulnerability to storm surge and tidal
flooding in the present and the future. Sources of extensive exposure to flooding
that remain for future research are pluvial and groundwater flooding.

● FVI indicators were selected through literature review and discussions with Interagency
Collaborators and the advisory team. Analyses compared two common aggregation
approaches (geometric and linear averaging) during the spatial analysis and selected
the geometric averaging method for the final index.

● The different FVIs show consistently high values in some NYC neighborhoods such as
west Coney Island, southeast Staten Island (e.g. Oakwood, New Dorp Beach, Midland
Beach, Dongan Hills, Arrochar), east Rockaway (e.g. Far Rockaway, Edgemere, Arverne),
and areas around the perimeter of Jamaica Bay such as Hamilton Beach, Broad
Channel, and Rosedale (Figure 8). The majority of neighborhoods in Jamaica Bay show
high vulnerability to both storm surge and coastal flooding. Other locations with
generally high FVIs appear in the southern coast of Manhattan (e.g. Lower East Side), in
northern Manhattan by the Harlem River, and east Bronx (e.g. City Island, Pelham Bay).
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Figure 5.1: Development of the Flood Vulnerability Index. Graphic design by Pablo
Herreros-Cantis and Sofya Krasnaya

5.3 The definition of vulnerability

A literature review provided flood vulnerability frameworks and definitions to guide FVI
development. This review explored different approaches to defining and assessing vulnerability
proposed in the literature, and identified methods for selecting vulnerability indicators and for
aggregating indicators into vulnerability indices. Further, we assessed the state of the
knowledge regarding different flood hazards known to impact NYC in order to evaluate which
flood hazards should be included in the final set of hazard specific FVIs for NYC.

The literature proposes several different frameworks and definitions of vulnerability without a
consensus regarding the preferred one. A key distinction between different approaches to
vulnerability lies in the inclusion of hazards and exposure as part of vulnerability. For instance,
CDC’s social vulnerability index presents vulnerability as a pre-existing condition based on
socio-economic indicators regardless of exposure to any type of hazard (Flanagan et al., 2011).
On the other hand, vulnerability has also been conceptualized as including exposure. For
instance, Cutter (2009) defines vulnerability as a combination of exposure and susceptibility to
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harm from a hazard shortly after a flood event as well as capacity to recover. Examples of
vulnerability assessment efforts using this definition include NYC’s Heat Vulnerability Index
(Madrigano et al., 2015), Balica et al. (2012), Scheuer et al. (2011), Fekete (2009), Kleinosky
et al. (2007), Yarnal (2007), Chakraborty et al. (2005), Wu et al. (2002), Cutter et al. (2000),
and Clark et al. (1998).

For the purpose of constructing the FVI, we adopt the latter definition, which conceptualizes
vulnerability as exposure to the hazard, susceptibility to harm from exposure, and capacity to
recover for several reasons. First, the definition is the broadest one, encompassing all
dimensions that policies and programs would need to address in order to reduce vulnerability.
Second, the definition supports investigating how the factors that compose vulnerability differ
across different hazards as well as different built environment and socio-economic conditions,
It allows the indicators of vulnerability to differ across conditions, which is more consistent
with evidence than the view that they are constant (e.g. Eriksen and Kelly 2007; Madajewicz
2020).

In the FVIs, we consider exposure of the population to different types of flood hazard.
Susceptibility to damage from flooding captures the extent to which populations are prepared
to weather the hazard, including the ability of populations to avoid threat to life and health, and
to maintain their access to basic needs, services, and sources of livelihoods. Capacity to
recover reflects multiple dimensions of the population’s capacity to return at least to the
pre-hazard level of livelihood, including financial state and access to housing, employment,
supportive social networks, food, health care, and education.

5.4 Quantifying Vulnerability: Selecting Indicators for NYC’s FVI

We selected indicators for the exposure sub-index and for the FSHRI following the processes
described below.

a. Exposure

The exposure component of the FVI assesses the percentage of the population that may
experience flooding in order to remain consistent with the sociodemographic indicators
included in the FSHRI. Two spatial analysis methods were considered to assess exposure to
specific flooding scenarios:

● Census Block level population exposure assessment: In this approach, we calculated
the percentage of each Census Tract’s population deemed exposed to flooding. We
retrieved population data from the U.S. Decennial Census, which provides population
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counts at the Census Block level, and we flagged each census block as exposed to
flooding if it overlapped with the extent of the flooding in each scenario considered.

● Parcel level residential units exposure assessment: We calculated the percentage of
each Census Tract’s residential units deemed exposed to flooding. We retrieved
residential parcels from NYC’s MapPLUTO 2023 V1. A distance analysis assigned to
each parcel the minimum distance from that parcel to flooding in each scenario. The
exposed parcels were those whose minimum distance to flooding was less than 32.8ft
(10m) to consider flooding exposure of nearby residential areas, consistent with
approaches taken in other related exposure studies. This distance threshold was
considered over a direct overlap in order to consider the impacts of flooding that may
occur in the immediate surroundings of homes. Further iterations of this exposure
assessment may adapt to specific use-cases and updates by considering different
distance thresholds. Finally, we computed the percentage of the residential units in
each Census Tract that were flagged as exposed.

The Census Block approach assessed the entire population of a block that would be exposed if
the block overlaps with flooding. The approach may overestimate the percentage of the
population that is actually exposed as shown in the first panel of Figure 2. A potential solution
to the problem is to consider the percentage of the exposed population to be the same as the
percentage of the flooded area in the block but the population is not likely to be uniformly
distributed in each block. In addition, using coarser resolutions to assess exposure may
conceal disproportionate risks faced by disadvantaged communities (Maantay & Maroko,
2009).

The exposure sub-index of the FVI is based on the parcel level approach to assessing
exposure. The parcel level spatial analysis enabled assessing exposure at a higher resolution
than the Census Block approach, which also prevented overestimating the total number of
residents exposed to flooding implied in assuming full exposure at the Census Block level (see
second panel of Figure 5.2).
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Figure 5.2: Parcel level spatial analysis

The Team selected the final six flooding scenarios (Table 5.1) from a larger initial set based on
input from MOCEJ and Interagency Collaborators. The scenarios consider the two coastal
flood hazard types identified in the literature review (storm surge and tidal flooding). Exposure
to each flood hazard includes a “current'' scenario that depicts the distribution of a flooding
event under current conditions. For storm surge and tidal flooding, two additional “future”
scenarios assess exposure in the 2050s and 2080s based on data developed by the New York
City Panel on Climate Change (NPCC). Figure 3 shows the exposure assessments, or exposure
indices, calculated for each scenario.

Table 5.1: Summary of flooding scenarios considered to assess exposure across NYC.

Scenario Name Flooding Type Hazard Layer and Source

Vulnerability to Storm Surge
Flooding - current

Coastal-Storm Surge FEMA’s Special Flood hazard Area
- 2015 Preliminary release (FEMA,
n.d.)

Vulnerability to Storm Surge
Flooding - 2050s

Coastal-Storm Surge FEMA’s Special Flood Hazard Area
with sea level estimates for the
2050s, high estimate scenario
(Patrick et al., 2015)

Vulnerability to Storm Surge
Flooding - 2080s

Coastal-Storm Surge FEMA’s Special Flood Hazard Area
with sea level estimates for the
2080s, high estimate scenario
(Patrick et al., 2015)

Vulnerability to Tidal Flooding -
2020S

Coastal-Tidal Mean Higher High Water (mhhw)
estimates for 2020s, high estimate
scenario (Horton et al., 2015)
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Vulnerability to Tidal Flooding -
2050s

Coastal-Tidal Mean Higher High Water (mhhw)
estimates for the 2050s, high
estimate scenario (Horton et al.,
2015)

Vulnerability to Tidal Flooding -
2080s

Coastal-Tidal Mean Higher High Water (mhhw)
estimates for the 2080s, high
estimate scenario (Horton et al.,
2015)
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Figure 5.3: Exposure per flooding scenario considered, measured as the % of residential units
within the Census Tract located within a 32.8ft buffer of the closest flooding. Full page
individual maps are provided in Appendix 5.2.

b. Susceptibility and Capacity to Recover

The FVIs reflect susceptibility to harm from flooding and capacity to recover to the extent that
the indicators that are included in the index accurately capture each of these dimensions of
vulnerability in the population. The team developed a preliminary list of indicators of
susceptibility to harm from flooding and capacity to recover based on the indicators identified
in the literature review. We focused on indicators that were validated in prior research through
empirical studies like Rufat et al. (2019), Madajewicz (2020), and Tellman et al. (2020),
conducted primarily for the case of storm surge flooding. We finalized the list in consultation
with Interagency Collaborators and the advisory team (Table 2).

We eliminated some indicators from the final list due to statistical multicollinearity or lack of
data. Multicollinearity was tested in this set of indicators through the Variance Inflation Factor
(VIF), a metric that depicts collinearity. According to the approach, VIF values higher than five
indicate excessively high multicollinearity, and may require removing or replacing them with
others (McPhearson et al., 2021). We removed median income and poverty rate based on their
high VIF values and their redundancy with other economic variables. We selected per capita
income rather than median income because of the evidence in Madajewicz (2020) that per
capita income is strongly correlated with a number of dimensions of vulnerability to flooding.
The same paper suggests that poverty rate would not reflect the particularly high vulnerability
to flooding among low to middle-income homeowners, which is much higher on some
measures than vulnerability among poorer renters. The higher annual household income
threshold of $75,000 is more effective at identifying vulnerability among low to middle income
homeowners, and is not much higher than the originally considered threshold that was two
times the poverty level. The highest VIF value in the final set of variables is 5.01 for the
annual household income lower than $75,000 threshold.

The team used the final set of 12 indicators to map susceptibility to harm and capacity to
recover flooding across NYC. All data are from the US Decennial Census for 2020 or the US
American Community Survey 5-year estimates for the years 2016-2020, as shown in Table 5.2,
aggregated at the Census Tract level.

Data availability limited the consideration of indicators to those that could be sourced from the
US Census Bureau. We discarded other indicators initially flagged as desirable, such as the
proportion of homes and businesses insured against flooding, due to lack of consistent data.
We consulted FEMA’s openly available data that reports the NFIP’s redacted policies. The
dataset did not provide full coverage of the city’s residential insurance coverage.
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During the data gathering processes, we removed the Census Tracts (CTs) that overlap with
large city parks, cemeteries, and airports due to gaps and inconsistencies in the raw
sociodemographic data. A list with the 35 CTs that were removed based on this criteria is in
Appendix 5.3.

Table 5.2: Susceptibility to harm and capacity to recover indicators selected based on the
literature review and the inputs provided by Interagency Collaborators and the advisory team.
Indicators highlighted in red were omitted due to high multicollinearity values based on their
Variance Inflation Factor (VIF) and/or high correlations with other indicators. See Appendix
5.1. for a full list of pre-selected indicators during the project’s literature review.

Indicator Data Source VIF before removal of
discarded variables

VIF after removal of
discarded variables

% Population
self-reported as Black,
Indigenous, Person Of
Color (BIPOC)

2020 US Decennial
Census

2.20 2.16

% Population in
vulnerable age - elderly
(+60 years old)

2.53 2.44

% Population in
vulnerable age - infant
(0-5 years old)

1.72 1.59

% Population with a
disability

2016-2020 US American
Community Survey (ACS)

1.70 1.63

% People above 5 years
old living in Language
Isolation (speaks English
“not well” or “not at all”)

1.88 1.80

% Elder adults living
alone 2.01 1.98

% People without health
insurance 1.81 1.81

%HH with HH income
below 75K 6.72 5.01

% owner occupied homes 2.96 2.63

Per capita income 6.85 2.73

Median Income 9.43 -
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% Population living below
2x the federal poverty line 5.54 -

% owned HH with
expenses higher than
30% HH income

1.19 1.19

% rented HH with rent
costs higher than 30% HH
income

1.54 1.52

5.5 Creating NYC’s FVI: Aggregating Indicators Into an Index

The team aggregated the indicators that represent susceptibility to harm and capacity to
recover into a base Flooding Susceptibility to Harm and Recovery Index (FSHRI). Then, we
aggregated the single FHSRI with each of the six scenario-specific exposure indicators to
develop the final six versions of the hazard specific Flood Vulnerability Indices.

The team proposed to average indicators to construct the index rather than using the principal
component analysis (PCA) approach due to limitations of the PCA approach explained in the
literature review. We tested and compared two averaging methods:

● A linear aggregation approach, which sums the normalized indicators10 and divides the
sum by the number of indicators considered (arithmetic mean).

● A geometric aggregation approach, which yields the nth root of the product of n
normalized indicators (geometric mean).

In consultation with Interagency Collaborators and the advisory team, the Task 5 team
calculated the final FVIs using the geometric approach, based on an analysis of the trade-offs
between the two approaches to aggregation. First, how index components are normalized
affects their ranking with respect to an arithmetic average but not the geometric. Therefore, as
maximum and minimum values of indicators change over time, the change will alter the ranking
of areas whose indicator values do not change if we use an arithmetic average, but not if we
use a geometric one. Second, the geometric average treats the indicators as having more
distinct effects on vulnerability that are not necessarily substitutable. A given increase in one
indicator can be completely offset by an equal decline in another indicator in an arithmetic
average, but not in a geometric average. Third, the geometric average takes into account the
dependence of values of different indicators, which may be due to correlation between them,
whereas an arithmetic average does not. Fourth, the geometric average reduces the effect of
extreme values on the average relative to the arithmetic. For example, a Census tract with a

10 Indicators were normalized using a min-max normalization approach by which the values are
re-scaled to a 1-100 scale. 𝐼(𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟i)= 1 + 100*(𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟i− 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟min)/(𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟max−𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟min).
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very high value for one index component but relatively low values for other components may
look more vulnerable than a Census tract with moderately high values for all components if we
use the arithmetic average. Taking a geometric average instead will reduce the average of the
tract with the one high value relative to the value of the tract all of whose components are
moderately high.

Figure 4 compares the two aggregation approaches applied to the FSHRI. Of the 2227 CTs
considered in the final analysis, 394 CTs (18%) obtained an index value in the 4th quartile
under the two aggregation methods considered. 326 (15%) obtained an index value in the 4th
quartile for one of the methods considered, and 1507 (67%) did not obtain an index value in
the 4th quartile for any of the methods. A look at a map showing the areas with high FSHRI
based on both aggregation methods provides important insights (Figure 5). First, the CTs with
consistently high FVIs are clustered spatially in the Central Bronx, North Queens, Southwest
Brooklyn, and a SW-NE corridor across Brooklyn and Queens. Other isolated hotspots appear in
North Staten Island and Rockaways. Second, the vast majority of CTs that scored high (4th
quartile) under only one of the two aggregation methods are heavily correlated spatially with
those that scored high for both. An additional scatterplot shows how the two indices are
correlated with the mentioned tendency of the geometric average to generate lower values
than the linear average.

Figure 5.4: Preliminary results of the Flood Susceptibility to Harm and Recovery Index
(FSHRI), comparing the two data aggregation approaches considered. The FSHRI corresponds
to the aggregate of the indicators depicting susceptibility to harm and capacity to recover,
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without considering event-specific exposures. As shown in the maps, the geometric
aggregation method shows a lower density of tracts earning a high index value as it limits the
influence of individual indicators in the final result.

Figure 5.5:Map showing the number of aggregation methods in which Census Tracts scored a
FSHRI within the highest quartile. A value of two indicates a CT scored a high FSHRI under
both aggregation scenarios, while a value of one indicates only one aggregation method
produced a high index value. On the right, a scatterplot comparing both aggregation methods.

Finally, we developed six scenario-specific Flood Vulnerability Indices by combining the final
FSHRI (Figure 6) with each of the exposure indices, which are the normalized percentages of
residential units exposed to flooding in each flood hazard scenario (Figure 7). Each FVI is the
geometric average of the FSHRI and one of the six exposure indices. We aggregated Census
tracts into vulnerability quintiles and assigned a score ranking from one to five accordingly,
with one being the lowest vulnerability quintile and five being the highest.
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Figure 5.6: Final Flood Susceptibility to Harm and Recovery Index (FSHRI) with values
aggregated using a geometric averaging approach. Values represent the tract’s ranking in
quintiles, where one means lowest vulnerability and five means the highest. Greyed Census
Tracts were omitted from the FVI due to a lack of sociodemographic data available that
avoided the FSHRI from being computed.
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Figure 5.7: Final Flood Vulnerability Indices for each flood hazard scenario. Each FVI is the
result of aggregating the FSHRI with one of the six scenario-specific exposure indices.
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Exposure and FSHRI were aggregated using their normalized values before being ranked in
quintiles. Grey Census Tracts were omitted from the FVI due to a lack of sociodemographic
data, without which we could not compute the FSHRI. Full page individual maps are provided
in Appendix 5.4.

5.6 Discussion/Conclusions

Interpreting the FVIs

The value of each FVI indicates relative vulnerability or differences in vulnerability between
different Census tracts. The value is not an absolute measure of vulnerability. Census tracts
with higher FVI values are more vulnerable and bigger differences between FVI values indicate
bigger differences in vulnerability. However, equal values of the FVI do not mean the areas that
share the same values are vulnerable to flooding in the same ways. The nature of vulnerability
in areas that share the same values of any of the FVIs can be very different. Understanding
differences between the components of each FVI across Census tracts can provide information
about the nature of vulnerability in different tracts.

Each FVI combines exposure to flooding in a given scenario and the FSHRI with equal weights.
The FVI has a value of zero (no vulnerability) for any area that is not exposed to flooding under
the given flood hazard scenario. The greater is the number of residential units in proximity to
the given flood hazard, the higher is the value of the FVI, reflecting greater vulnerability
because of greater exposure.

The value of the FVI also rises as the value of the FSHRI increases, indicating greater
vulnerability because of greater susceptibility to harm and/or lower capacity to recover. Higher
values of the FSHRI likely reflect high values of multiple indicators. The FSHRI is a geometric
rather than an arithmetic average of the normalized indicator values, making it less responsive
to high values of a single indicator than an arithmetic average would be. However, a high value
of the FSHRI does not mean all component indicators have high values, and a low value does
not mean that all indicators have low values. Furthermore, two areas with the same value of
the FSHRI may have very different values of all component indicators. Indicators with high
values in one area may have low values in another area with the same value of the FSHRI.

Understanding differences between the values of component indicators between areas
provides some information about the differences in drivers of vulnerability across those areas.
Studies show that different indicators are correlated with different dimensions of vulnerability.
(e.g. Madajewicz 2020) Dimensions of susceptibility to harm include harm to life or health,
severity of damage to property, displacement from home, and disruption in access to critical
services, such as food, health care, education, transportation, and utilities. Each of these
dimensions is correlated with different socio-economic indicators, which comprise the FHSRI.
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For example, risk to life or health tends to be greater in areas that have a higher proportion of
the elderly and the very young. Damage to property tends to be greater for owner-occupied
homes, the lower income homeowners, and households with disabled or chronically ill
members. Disruptions of access to food tend to be greater where the percentage of BIPOC
residents is higher, and disruptions to health care where the proportion of the disabled or
chronically ill is higher. Dimensions of capacity to recover include length and completeness of
recovery and financial vulnerability, which includes cost of recovery, change in assets, and
change in employment. Cost of recovery is orders of magnitude higher for homeowners and
increases as a proportion of income as income declines, and recovery tends to be longer and
loss of job more likely for the disabled and the chronically ill.

Understanding which indicator values are high in a given area can provide guidance regarding
programs that may reduce vulnerability in that area in a way that knowing the FVI or FSHRI
value cannot. For example, high proportions of owner-occupied homes strongly indicate that
financial vulnerability is high and the residents need programs that help them to make
well-informed decisions about and to finance mitigation of flood damages in the short- and
medium- term to reduce repetitive recovery costs. If these owner-occupied homes are
low-rise, the financial vulnerability is also likely to be exacerbated by relatively high damages in
case of flooding. Areas with high proportions of BIPOC populations need special attention to
securing access to food during and after flood events. Households with chronically ill and/or
disabled residents especially need assistance with access to health care, with repairing flood
damage both because they tend to suffer greater damages and they require more time to
repair damages without assistance, and with ability to go to work in order to maintain job
security.

Distribution of FVI across NYC

The different FVIs show consistently high values in some NYC neighborhoods, such as west
Coney Island, southeast Staten Island (e.g. Oakwood, New Dorp Beach, Midland Beach,
Dongan Hills, Arrochar), east Rockaway (e.g. Far Rockaway, Edgemere, Arverne), and areas
around the perimeter of Jamaica Bay such as Hamilton Beach, Broad Channel, and Rosedale
(Figure 8). The majority of neighborhoods in Jamaica Bay show high vulnerability to both storm
surge and coastal flooding. Other locations with generally high FVIs appear in the southern
coast of Manhattan (e.g. Lower East Side), in northern Manhattan by the Harlem River, and east
Bronx (e.g. City Island, Pelham Bay).
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Figure 5.8: Flood vulnerability hotspots based on calculating the sum of the FVI scores. Four
different aggregations are presented: Figure a) aggregates the FVIs including current flood
hazard estimates (2020s tidal, storm surge - current). Figure b) shows the aggregate of FVIs
considering future flood hazard projections for the 2050s (2050s tidal, storm surge - 2050s).
Figure c) shows the aggregate of FVIs considering future flood hazard projections for the 2080s
(2080s tidal, storm surge - 2080s). Figure d) shows the aggregate of all six FVIs developed.

Future directions

The development of NYC’s FVI encountered some limitations, which may guide future updates
and improvements. For instance, we did not consider a future or extreme stormwater flood
hazard scenario because the current available hazard layer conflates stormwater and future
tidal flooding, masking areas that suffer from extreme stormwater flooding today. Using this
hazard layer would have implied either a) considering pluvial and tidal flooding as a single
hazard, biasing exposure metrics to low-lying coastal areas, or b) omitting tidal flooding and
assuming no exposure in the same coastal areas.
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The exposure assessment in each FVI relies on residential units as a proxy for population
density at a granular level that was not possible using Census data. However, this approach
assumes all households in New York City are equally important regardless of their size, and all
households are equally exposed to flooding regardless of their elevation above the ground.
Data may support an approach that is more representative of the differences in household size
across NYC. Another aspect that may be revisited in future iterations of the exposure
component of the FVI is the distance threshold used to flag residential parcels as exposed to
flooding (32.8 ft. /10m). We selected this threshold under the premise that having floodwaters
10m away from home or less will impact residents, as well as accounting for varying
resolutions and assumptions made in mapping flood hazards (i.e. pluvial flooding is published
for Right of Way areas such as roads, potentially masking or ignoring flooding that may occur
closer to homes). Future iterations may consider how using wider or narrower thresholds to
deem a property as exposed may influence the analysis of vulnerability to flooding.

The exposure component of the FVI considers only residential units. Growing evidence
suggests certain structural elements, which could be included in the exposure sub-index,
contribute to greater flood damages. Many deaths by drowning as well as the bulk of repetitive
damages due to flooding and recovery expenses occur in basements (Madajewicz et al., 2022).
In general, low-rise housing experiences much greater damages from flooding than do
high-rise buildings (City of New York 2013). Future iterations of the FVIs could capture these
structural elements in the exposure component to highlight where exposure is likely to cause
the most harm.

Future research should investigate further which indicators are correlated with which
dimensions of vulnerability. The nature of vulnerability to flooding differs across the City’s
neighborhoods. As the evidence improves, future versions of the FVIs could include the option
to map individual indicators or subsets of indicators that comprise the FHSRI in order to
provide more information about the types of vulnerability present in each neighborhood and
better guidance for the reduction of vulnerability. Further research can also shed light on the
tradeoffs between the geometric and the arithmetic average as approaches to aggregating the
indicators. In particular, research should examine how outcomes experienced as a result of
flooding differ in areas with very high values of a small number of indicators and areas in which
a larger number of indicators have moderately high values. The arithmetic approach may
consider the former case more vulnerable, while the geometric may assign a higher
vulnerability value to the latter.

The NYC FVIs may be updated in the future in order to reflect evolving knowledge and
resources. In addition to points discussed above, further empirical work may shed light on
indicators whose correlation with vulnerability to flooding require their addition or removal
from the FVI. Research may suggest new indicators, for which improved data may become
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available, such as data on relevant measures of social capital, and/or studies may show that
different indicators are correlated with vulnerability to different types of flooding. New
estimates from the American Community Survey (ACS) and a new Decennial Census release for
the year 2030 will provide updated sociodemographic data in the coming years. Ongoing
research efforts across VIA, the NPCC, and other organizations are expected to generate novel
flood hazard layers that would enable exposure assessments under a wider variety of
scenarios, and future projections will improve for the future scenarios considered in the current
FVIs.
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Appendix 5.1

Indicators submitted in the literature review based on identified coastal vulnerability
assessments and correlation studies. Bolded indicators were pre-selected based on
Interagency input for further consideration by exploring available data. Indicators reflecting
outcomes from previous flooding events were not considered due to potential data gaps across
the entire city. Indicators are highlighted with superscripts if an empirical study has obtained
statistically significant results to determine the correlation between the indicator and flooding
outcomes based on Madajewicz (2020) “MM”, Tellman et al. (2020) “T” and Rufat et al. (2019)
“R”. Each initial is added “ns” or “ss” if the indicator tested produced statistically significant
results. A relationship indicated as both positive and negative (+/-) means that the tests
produced mixed results on the relationship between the indicators and vulnerability.

Table 5.5: FVI Indicators

Vulnerability
Category

Indicator (relationship) Source(s)

Capacity to Recover Educational attainment e.g. Population lacking a
High School Diploma (+) (validated for
population lacking college degree)(-) MMns

(de Sherbinin & Bardy, 2015;
Herreros-Cantis et al., 2020; Kontokosta &
Malik, 2018; Zahmatkesh & Karamouz,
2017)

Capacity to Recover Households/people living below poverty level
(+) Tss MMns

(de Sherbinin & Bardy, 2015;
Herreros-Cantis et al., 2020; Reckien,
2018; Zahmatkesh & Karamouz, 2017)
Phase 1 stormwater resiliency plan

Capacity to Recover Single parent families (+)MMns (de Sherbinin & Bardy, 2015;
Herreros-Cantis et al., 2020)

Capacity to Recover Single occupant homes (+) MMns (Kontokosta & Malik, 2018; Reckien, 2018)

Capacity to Recover Non-family households with under 18
occupants (+) (validated for families with
children under 18) MMns

(Kontokosta & Malik, 2018)

Capacity to Recover Vacant housing (+) Rss Tss (Kontokosta & Malik, 2018; Zahmatkesh &
Karamouz, 2017)

Capacity to Recover Population over 3 not enrolled in school (+) (Kontokosta & Malik, 2018)

Capacity to Recover Population lacking health insurance coverage
(+)

(Kontokosta & Malik, 2018)

Capacity to Recover Unemployment rate (+) (Kontokosta & Malik, 2018)

Capacity to Recover Gini Index (income inequality) (+) (Kontokosta & Malik, 2018)

Capacity to Recover Economic diversity (% employed population
working in the single largest economic sector)

(Kontokosta & Malik, 2018)
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(-)

Capacity to Recover Households receiving social security support (+)
MMns

(de Sherbinin & Bardy, 2015)

Capacity to Recover Households making more than 200000 annually
(-)

(de Sherbinin & Bardy, 2015)

Capacity to Recover People / Businesses with Flood Insurances (-) (Zahmatkesh & Karamouz, 2017)

Capacity to Recover Population employed in vulnerable jobs (+) (Zahmatkesh & Karamouz, 2017)

Capacity to Recover/
Susceptibility

Language isolation (+) Tns (Chang et al., 2021; de Sherbinin & Bardy,
2015; Herreros-Cantis et al., 2020;
Zahmatkesh & Karamouz, 2017)

Capacity to Recover/
Susceptibility

Income (-) MMss Rns Tns (Chang et al., 2021; Herreros-Cantis et al.,
2020)

Capacity to Recover/
Susceptibility

Presence of Emergency Centers (-) (Chang et al., 2021)

Capacity to Recover/
Susceptibility

Female headed households MMns (de Sherbinin & Bardy, 2015)

Capacity to Recover/
Susceptibility

Density of critical services (hospitals, schools,
food sources, evacuation shelters, homeless
shelters, public safety, WWTP, Airports, Bridges,
Tunnels, streets, subway lines and stop) (-) MMss

(Kontokosta & Malik, 2018; Zahmatkesh &
Karamouz, 2017)
Phase 1 stormwater resiliency plan

Capacity to
Recover/Susceptibili
ty

Owner occupied households (+/-) Rss Tss MMss (Chang et al., 2021; de Sherbinin & Bardy,
2015; Herreros-Cantis et al., 2020)
Phase 1 stormwater resiliency plan

Exposure Number of buildings exposed (+) (Herreros-Cantis et al., 2020; Zahmatkesh
& Karamouz, 2017)
Phase 1 stormwater resiliency plan

Exposure Building Density (+) (Kontokosta & Malik, 2018)

Exposure Number of residential units exposed (+) (Herreros-Cantis et al., 2020; Zahmatkesh
& Karamouz, 2017)

Exposure Total residential area exposed (+) (Herreros-Cantis et al., 2020)

Exposure Total industrial area exposed (+) (Herreros-Cantis et al., 2020)

Exposure Total commercial area exposed (+) (Herreros-Cantis et al., 2020; Zahmatkesh
& Karamouz, 2017)

Exposure Total office area exposed (+) (Herreros-Cantis et al., 2020)

Exposure Total value of exposed properties (-) Tss (Herreros-Cantis et al., 2020; Zahmatkesh
& Karamouz, 2017)

Exposure Total exposed population (+) (Chang et al., 2021; Herreros-Cantis et al.,
2020; Zahmatkesh & Karamouz, 2017)
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Exposure Population density (+) (Chang et al., 2021; de Sherbinin & Bardy,
2015; Kontokosta & Malik, 2018; Reckien,
2018; Zahmatkesh & Karamouz, 2017)

Exposure Proximity to locations listed in the Toxic Release
Inventory (+)

(Chang et al., 2021)

Exposure Population per housing unit (+/-) MMns Tss (de Sherbinin & Bardy, 2015)

Exposure Area in the floodplain (+) Phase 1 stormwater resiliency plan

Exposure 311 call counts reporting flooding (+) Phase 1 stormwater resiliency plan

Exposure Average elevation (-) Phase 1 stormwater resiliency plan

Exposure Length of coastline (+) (Zahmatkesh & Karamouz, 2017)

Susceptibility Population identified as BIPOC (+/-) Rss Tss MMss (de Sherbinin & Bardy, 2015;
Herreros-Cantis et al., 2020; Reckien,
2018)
Phase 1 stormwater resiliency plan

Susceptibility Impervious surfaces (-) Tss (Chang et al., 2021; Zahmatkesh &
Karamouz, 2017)
Phase 1 stormwater resiliency plan

Susceptibility Wetlands (-) (Chang et al., 2021)

Susceptibility Road density (+) (Chang et al., 2021)

Susceptibility Presence of Green Infrastructure (-) (Chang et al., 2021)
Phase 1 stormwater resiliency plan

Susceptibility Density of subway stations (redundancy for
evacuation) (-)

(Kontokosta & Malik, 2018)

Susceptibility Tree density (-) (Kontokosta & Malik, 2018)

Susceptibility Open Space (-) (Kontokosta & Malik, 2018)

Susceptibility Median Age (+) (de Sherbinin & Bardy, 2015)

Susceptibility Female population (+) (de Sherbinin & Bardy, 2015; Reckien,
2018)

Susceptibility People living in a nursing home or
skilled-nursing facility (+)

(de Sherbinin & Bardy, 2015)

Susceptibility Average building age (+) Phase 1 stormwater resiliency plan

Susceptibility Presence of basements (+) Phase 1 stormwater resiliency plan

Susceptibility Presence of coastal structural measures to
control floods and flood/storm control
capacities (-)

(Zahmatkesh & Karamouz, 2017)

Susceptibility Building height / residential building type
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Susceptibility/
Capacity to recover

Households without a car (+/-) Rss (de Sherbinin & Bardy, 2015;
Herreros-Cantis et al., 2020; Reckien,
2018)
Phase 1 stormwater resiliency plan

Susceptibility/
Capacity to recover

Vulnerable age (e.g. less than 5, over 65) (+/-)
Tss Rss MMns

(Chang et al., 2021; de Sherbinin & Bardy,
2015; Herreros-Cantis et al., 2020;
Kontokosta & Malik, 2018; Reckien, 2018;
Zahmatkesh & Karamouz, 2017)
Phase 1 stormwater resiliency plan

Susceptibility/
capacity to recover

Residents' awareness and preparedness (-) (Zahmatkesh & Karamouz, 2017)

Susceptibility/
Capacity to recover

People with a disability or chronic illness (+)
Tss MMss

(Zahmatkesh & Karamouz, 2017)
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Appendix 5.2
Full-size individual exposure maps for each scenario.

Figure 5.9: Exposure - Storm Surge Current
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Figure 5.10: Exposure - Storm Surge 2050s
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Figure 5.11: Exposure - Storm Surge 2080s
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Figure 5.12: Exposure - Tidal 2020s
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Figure 5.13: Exposure - Tidal 2050s
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Figure 5.14: Exposure - Tidal 2080s
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Appendix 5.3
Table 5.5: Census Tracts removed from the FVI development due to a lack of consistent
sociodemographic data. Population 2020 shows the amount of people counted in the U.S.
Census.

Tract GEOID 2020 Park / Site Name Population
2020

36061014300 Central Park 129

36005043503 Van Cortlandt Park 122

36005050400 Pelham Bay Park NORTH 5

36005027600 Pelham Bay Park SOUTH 23

36005033400 Bronx Zoo + Botanical Park 69

36061029700 Inwood Hill Park 16

36005016300 Crotona Park 34

36005002400 Soundview Park 6

36047017700 Prospect Park 15

36047017500 Greenwood Cemetery 5

36047035702 Lincoln Terrace 15

36047015400 Dyker Beach Park 9

36047066600 Marine Park 1

36047102802 Canarsie Park 5

36081071600 JFK 2

36081064102 Forest Park 4

36047118000,
36081056100,
36047040700

Highland Park 33
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36081066302 Juniper Valley Park 4

36081065501 St. John Cemetery 3

36081060701 Mt. Olivet Cemetery 3

36081053902 Linden Hill cemetery 88

3608103z8302 Flushing Meadows Corona Park 44

36081121100 Kissena Park 2

36081079300 Mt. Hebron Cemetery 1

36081128300 Cunningham Park 5

36081138502 Alley Pond Park 85

36081028803 Baisley Pond Park 8

36081065402 Brookville Park 5

36081010701 LaGuardia Airport 7

36085022802 Freshkills Park 15

36085022801 Freshkills Park WEST 95

36085015400 Great Kills Park 5

36085005902 Silver Lake Park 5
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Appendix 5.4

Full-size individual FVI maps for each scenario.

Figure 5.15: FVI- Storm Surge Current
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Figure 5.16: FVI- Storm Surge 2050s
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Figure 5.17: FVI - Storm Surge 2080s
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Figure 5.18: FVI - Tidal 2020s
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Figure 5.19: FVI - Tidal 2050s
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Figure 5.20: FVI - Tidal 2080s
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Cross-Cutting Themes and Task Synthesis

Interactions and Synergies
Throughout the VIA process, there is a collaborative effort among the task teams to integrate
data and methodological expertise across the diverse climate, impacts, and vulnerability
research areas. These collaborative approaches are crucial in the multi-faceted and
co-produced research process. The Task teams, aside from the deep research in each Task,
have also met regularly to share interim and final results, discuss cross-cutting themes, and to
synthesize findings across the VIA project to provide conclusions and recommendations that
are robust and comprehensive.

Task 2 (Climate Projections and Climate-Sensitive Hazards) & Task 3 (Extreme Heavy
Rainfall Analysis):

● Shared Climate Modeling Data: Task 2's climate projections, including sea level rise and
temperature changes, and Task 3 analyses of extreme heavy rainfall are important to
consider together. These tasks shared climate modeling data to ensure consistency in
their projections and to understand the interplay between different climate variables.

● Joint Impact Analysis: The insights from Task 2 regarding climate-sensitive hazards
helped guide Task 3 in understanding the potential impacts of heavy rainfall events,
particularly in the context of urban flooding and storm surges.

Task 2 (Climate Projections) and Task 4 (Health-Related Economic Costs of Climate
Events):

● Utilizing Climate Data for Health Impact Assessment: The climate projections from Task
2 were pivotal for Task 4's assessment of health-related economic costs.
Understanding the frequency and severity of climate-sensitive events, such as heat
waves or extreme weather, was important for evaluating the impact on public health.

● Collaborative Risk Assessment: The risk assessments conducted in Task 2 provided a
foundational basis for Task 4's evaluation of economic impacts, ensuring that the health
impact assessments are aligned with the latest climate projections.

Task 3 (Heavy Rainfall) and Task 4 (Health-Related Economic Impacts):

● Data on Rainfall Intensity and Health Outcomes: The findings of Task 3, particularly
regarding the increase in frequency and intensity of heavy rainfall, helped assess the
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potential increase in health-related incidents, such as injuries or illnesses due to
flooding or mold exposure.

● Infrastructure Development and Health Risk: The insights from Task 3 on urban flooding
informed Task 4's analysis of economic costs, particularly in urban planning and
infrastructure development, to mitigate health risks.

Task 5 (Flood Vulnerability):

● Flood Vulnerability Index development: The final FVIs were not only included in the
NPCC4 Flooding chapter, but the hazard data were also provided to Task 4 to inform
population projections and shared with other key partners in the city during
development, for example to inform the FloodNet team’s strategy for placing new flood
sensors in flood vulnerable locations.

Further Research

The VIA study has illuminated several critical areas for future research, essential for deepening
our understanding of climate change impacts in New York City. These areas include, but are not
limited to, acquiring more detailed data on precipitation and storm surge patterns, examining
the potential effects of climate change on urban heat islands and related health costs,
analyzing the impacts of drought and air quality, understanding the combined effects of
multiple climate hazards, validating vulnerability indicators for different types of flooding,
documenting the relationship between indicators and different components of vulnerability to
guide the development of programs that reduce vulnerability, and advancing the vulnerability
assessment methodology to better track the change in vulnerability over time. Despite the
comprehensive insights provided by the VIA process, the importance of ongoing research
cannot be overstated.

Continued investigation is crucial. Even with the detailed reporting presented in VIA, these
identified research gaps are stepping stones for further collaborations and investments
involving academic institutions, city government, and local community members. Proactively
identifying these avenues for future research is a crucial step toward making New York City
more forward-thinking in its approach to climate adaptation.
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